
Estimating population size with 
maximum likelihood

L (q i∣N , H i)=(Ny i)q1
x11q2

x10q3
x01q4

x00



Estimating population size from two 
captures – maximum likelihood

● We can express mark-recapture estimators in terms of capture 
histories
– Requires individual marks if there are more than 2 capture periods

● We can model the probability of capturing an individual as an 
encounter probability

● We can use capture histories to estimate population size using 
maximum likelihood methods

● Advantages:
– Wide range of different mark/recapture designs can be accommodated
– We can test hypotheses about the mark/recapture study



Encounter probability
● In mark-recapture work, we know not every individual is caught in every 

capture period (some are never caught)
● Encounter probability = p = the probability of encountering an individual 

during a single capture period
● Encounter probability ranges from 0 to 1

– p = 1 → every individual is observed (if p = 1 we are doing a census)
– 0 < p < 1 → some degree of uncertainty about how many individuals are 

present, random variation in numbers counted at each capture period
– The closer p is to 1, the more certainty we have about population size

● Low encounter probability comes from several sources, some of which 
we can minimize



Encounter probability for a botanist
● Plants don't move and hide
● But, annual plants aren't always visible due to 

phenology
● Small plants may be perfectly detectable when 

you're near them, but detectability may drop off 
rapidly with distance

● Defining individuals may be difficult



Encounter probability at a distance

From Garrard et al. 2012



Defining individuals – sometimes it 
matters, sometimes not

Matters for 
population 
genetics

May not matter 
for population 
dynamics



Encounter probability for a zoologist

● Camouflage, hiding
● Nocturnal species
● Large home ranges, low density
● Rarity

● Trap saturation
● Environmental conditions
● Inexperienced workers

● We have all the problems botanists do (aside from 
defining individuals), plus animals move and hide

● Low encounter probability is caused by:



Example: bird surveys
● For large birds (raptors) usually done by sight

– What if it's in a different portion of its home range than you?
– What if it's behind something?
– What if it's camouflaged?

● For songbirds, usually done by sound
– Males do most of the singing, how many females and 

subadults?
– What if they don't sing while you're there?

Art Wolfe's Vanishing Act pictures

https://artwolfe.com/collection/vanishing-act/


The LP estimator and encounter 
probability

● Turns out, the LP estimator is a special case of a 
general model based on encounter probability

● Expressing the estimator in terms of encounter 
probability allows us to use methods to asses:
– Variation in encounter probability over time
– Trap responses (trap happiness, trap shyness)

● We need to re-express LP capture data as capture 
histories



Capture histories
● Capture histories are the sets of captures (1) or non-captures (0) for individuals in 

the population during the capture periods
● Require individually identifiable marks
● For a two-period study, the four possible 

outcomes are:
● These are often shortened to 

10, 11, 01, 00
● At the end of the study, we can count how many 

10, 11, and 01 there were
● Since these are all the possible histories, the sum of their frequencies will equal N 

– but the frequency of 00 is unknown
● So, estimating N means estimating how many 00's there are

Mark Recapture
1 0
1 1
0 1
0 0



Relating capture 
histories to LP

t1 t2 Freq.

1 0 X10 = 50

1 1 X11 = 50

0 1 X01 = 150

0 0 X00 = ??

n1=x10+ x11

Total caught (and marked) 
on first occasion (M in LP)

Total caught on the second 
occasion (c in LP)

n2= x01+x11

Total caught on both 
occasions (r in LP)

m2=x11

m2
n2

=
n1
N

N̂=
n1n2
m2

M = n1 = 100
r = m2 = 50
c = n2 = 200



The payoff...
● The proportion of animals that are marked recaptures in the second is the 

encounter probability:

p = m2/n2

● We can thus re-express the LP estimator as

● LP can be expressed as estimator that uses capture histories, and 
encounter probabilities

N̂=
n1n2
m2

=
n1
p



Translated LP estimate
M = n1 = 100
r = m2 = 50
c = n2 = 200

p = m2/n2 = 0.25

N̂=
n1n2
m2

=
n1
p

N̂=
100×200
50 =

100
0.25=400

Total captures was 50 + 50 + 150 = 250
Can calculate never captured as 400 – 250 = 150, but this 
value not estimated directly by the model



Maximum likelihood estimates of 
population size

● Four possible capture histories: (11, 10, 01, 00)
● Two unknowns:

– The probability of each capture history
– How many of history 00 there are

● With four possible outcomes (not two) we need 
the multinomial distribution (not binomial) to be 
our likelihood function



The multinomial probability distribution
● Four possible outcomes: 11, 10, 01, 00
● The data will be frequencies of each outcome: 

x11, x10, x01, x00

● Frequencies of 11, 10, and 01 are known from the data, but frequency of 
00 is unknown

● Multinomial is structured like the binomial
– Probability of each outcome = probability part
– Number of different ways to get it = counting part

p(H i∣N ,qi)=(Ny i )q1
x11 q2

x10q3
x01q4

x00



The multinomial probability distribution and 
likelihood function

p(H i∣N ,qi)=(Ny i )q1
x11 q2

x10q3
x01q4

x00 L (q i∣N , H i)=(Ny i)q1
x11q2

x10q3
x01q4

x00



Using encounter probability (p) to 
calculate probabilities of histories (q)

So....

q1 = p x p
q2 = p x (1-p)
q3 = (1-p) x p
q4 = (1-p) x (1-p)

...need to estimate p



Estimating population size – summing frequencies

These are all the possible histories, which means that N is equal to the 
sum of the frequencies
We know x11, x10, x01 from the data

If we can estimate x00 we can estimate N



Basic setup

We will be estimating the two values under MLE:
p and f(00) (aka x00)

Starting values for p and f(00) are entered (any values, but better if 
close to final estimates)
Probability of histories are based on the current values of p and 1-p



Calculating the log-likelihood
● Now to convert the multinomial probability distribution into a 

log-likelihood function
● The “probability part” is easy

– For history 00, just use the initial guess for f(00) as the frequency x00

– p is part of every q, so all depend on one of parameters we are 
estimating – no unneeded terms

log (q1
x11 q2

x10q3
x01q4

x00)=

x11 log (q1)+ x10 log(q2)+x01 log(q3)+ x00 log (q4)



The counting part is trickier...
● We can simplify this (Ny i)=

N !
x11 ! x10 ! x01! x00!

ln( N !
x11! x10! x01! x00 !

)

ln(N ! )−ln(x11 ! x10! x01 ! x00 !)

ln((M t+1+x00)! )−[ ln(x11 ! )+ ln(x10! )+ln( x01 !)+ln( x00!)]

ln((M t+1+x00)! )−ln(x00! )

Drop unneeded terms

To this



Problem: big numbers and computers
● Computers have limits on the number of digits they can 

store
● Exceeding the limit can lead to an error message (if you’re 

lucky), or a silently incorrect answer (if you’re unlucky)
● We need to calculate factorials, which can be very big
● Excel can do factorials up to 170 – any N over 170 will 

exceed that limit
● Fortunately, we don’t actually need the factorial, we need 

the log of the factorial



The gammaln() function
● In Excel, you can calculate the log of a factorial by using 

the gammaln() function

ln(x00!) = gammaln(x00 + 1)

ln((Mt+1 + x00)!) = gammaln(Mt+1 + x00 + 1)
● We now have the second part needed for the log-likelihood 

in a form we can use in Excel

gammaln(Mt+1 + x00 + 1) – gammaln(x00 + 1)



Putting it together...

Multinomial coefficient 
(counting part)

Probability part ( sum of frequencies x 
ln(probabilities))

Sum of the two 
parts



Numeric solutions – Solver
● With LP, we calculated an analytical solution

– Plugged in numbers to a formula, got an estimate
● With ML, it’s common to use numeric solutions

– The likelihood functions often can’t be solved for parameters of 
interest

– Instead, use a sophisticated form of trial and error to find 
estimates of p and f(00) that maximize the log-likelihood

– Solutions found to a fixed (specified) level of precision
● The tool that Excel uses to do this is called Solver



What will happen...
2...by changing the estimates

1. We will tell Solver 
to make this as big 
as possible...The probability of history column depends on p

The mult coef cell depends on f(00)
Full LnLik depends on both, so as p and f(00) are varied Full LnLik will change – Solver 
stops when changes in p and f(00) no longer increase Full LnLik



And the results...

Number of animals never captured, f(00) = 197.501
Encounter probability is 0.335
Probability of never being seen (00) = 0.442
Population size is Mt+1 + f(00) = 447.5



How did ML compare to LP?
● LP

– Estimate = 400
– Never seen = 150
– Encounter prob. = 0.25

● ML
– Estimate = 447.5
– Never seen = 197.5
– Encounter prob. = 0.335

● They aren’t the same
● ML is better

– Both p and f(00) are unknown, and the estimate depends on both
– LP doesn’t estimate f(00), and can be biased at low sample sizes



The log link
● The inverse function for the natural log is exp (it means, raise 

the base e to the power n)
● A negative exponent, 

e
-n
, is just 1/e

n

● So, exp(any number) is 
positive, negative numbers 
become increasing close to 0

● Having Solver change 
(any number), and use 
exp(any number) for f(00) keeps the estimates of f(00) over 0



Extensions, complications
● This is easy to extend to more capture events
● With more capture events we can ask questions 

like
– Are initial capture probabilities different from 

recapture probabilities (trap happy, trap shy)?
– Do capture probabilities change over time?

● We will look at these in lab next week


	Statistical inference
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 31
	Slide 32

