Estimating population size with maximum likelihood

 $L(q_i|N, H_i) = \binom{N}{V_i} q_1^{x_{11}} q_2^{x_{10}} q_3^{x_{01}} q_4^{x_{00}}$

Estimating population size from two captures – maximum likelihood

- We can express mark-recapture estimators in terms of capture histories
 - Requires individual marks if there are more than 2 capture periods
- We can model the probability of capturing an individual as an encounter probability
- We can use capture histories to estimate population size using maximum likelihood methods
- Advantages:
 - Wide range of different mark/recapture designs can be accommodated
 - We can test hypotheses about the mark/recapture study

Encounter probability

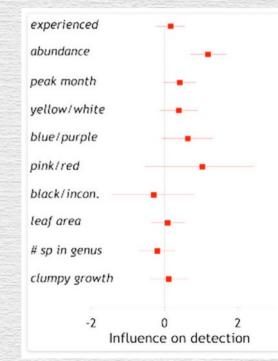
- In mark-recapture work, we know not every individual is caught in every capture period (some are never caught)
- Encounter probability = p = the probability of encountering an individual during a single capture period
- Encounter probability ranges from 0 to 1
 - $p = 1 \rightarrow$ every individual is observed (if p = 1 we are doing a census)
 - 0 present, random variation in numbers counted at each capture period
 - The closer p is to 1, the more certainty we have about population size
- Low encounter probability comes from several sources, some of which we can minimize

Encounter probability for a botanist

- Plants don't move and hide
- But, annual plants aren't always visible due to phenology
- Small plants may be perfectly detectable when you're near them, but detectability may drop off rapidly with distance
- Defining individuals may be difficult

Encounter probability at a distance

From Garrard et al. 2012



Defining individuals – sometimes it matters, sometimes not

Matters for population genetics

May not matter for population dynamics

Encounter probability for a zoologist

- We have all the problems botanists do (aside from defining individuals), plus animals move and hide
- Low encounter probability is caused by:
- Camouflage, hiding
- Nocturnal species
- Large home ranges, low density
- Rarity

- Trap saturation
- Environmental conditions
- Inexperienced workers

Example: bird surveys

- For large birds (raptors) usually done by sight
 - What if it's in a different portion of its home range than you?
 - What if it's behind something?
 - What if it's camouflaged?
- · For songbirds, usually done by sound
 - Males do most of the singing, how many females and subadults?
 - What if they don't sing while you're there?

The LP estimator and encounter probability

- Turns out, the LP estimator is a special case of a general model based on encounter probability
- Expressing the estimator in terms of encounter probability allows us to use methods to asses:
 - Variation in encounter probability over time
 - Trap responses (trap happiness, trap shyness)
- We need to re-express LP capture data as capture histories

Capture histories

- Capture histories are the sets of captures (1) or non-captures (0) for individuals in the population during the capture periods
- Require individually identifiable marks
- For a two-period study, the four possible outcomes are:
- These are often shortened to -10, 11, 01, 00
- At the end of the study, we can count how many 10, 11, and 01 there were
- Since these are all the possible histories, the sum of their frequencies will equal N
 – but the frequency of 00 is unknown
- So, estimating N means estimating how many 00's there are

Mark	Recapture
1	0
1	1
0	1
0	0

Total caught (and marked) on first occasion (M in LP)

$$n_1 = x_{10} + x_{11}$$

Total caught on the second occasion (c in LP)

 $n_2 = x_{01} + x_{11}$

Total caught on both occasions (r in LP)

 $m_2 = x_{11}$

Relating capture histories to LP

Freq.

 $X_{10} = 50$

X₁₁ = 50

X₀₁ = 150

 $X_{00} = ??$

t1

1

1

0

0

t2

0

1

1

0

 $\frac{m_2}{n_2} = \frac{n_1}{N}$

$\hat{N} =$	$\frac{n_1 n_2}{m_2}$
1 •	m_2

 $M = n_1 = 100$

 $r = m_2 = 50$ $c = n_2 = 200$

The payoff...

• The proportion of animals that are marked recaptures in the second is the encounter probability:

 $p = m_2/n_2$

• We can thus re-express the LP estimator as

$$\hat{N} = \frac{n_1 n_2}{m_2} = \frac{n_1}{p}$$

 LP can be expressed as estimator that uses capture histories, and encounter probabilities

Translated LP estimate

 $M = n_{1} = 100$ $r = m_{2} = 50$ $c = n_{2} = 200$ $\hat{N} = \frac{n_{1}n_{2}}{m_{2}} = \frac{n_{1}}{p}$ $100 \times 200 = 1$

 $p = m_2/n_2 = 0.25$

 $\hat{N} = \frac{100 \times 200}{50} = \frac{100}{0.25} = 400$

Total captures was 50 + 50 + 150 = 250 Can calculate never captured as 400 – 250 = 150, but this value not estimated directly by the model

Maximum likelihood estimates of population size

- Four possible capture histories: (11, 10, 01, 00)
- Two unknowns:
 - The probability of each capture history
 - How many of history 00 there are
- With four possible outcomes (not two) we need the multinomial distribution (not binomial) to be our likelihood function

The multinomial probability distribution

- Four possible outcomes: 11, 10, 01, 00
- The data will be frequencies of each outcome:
 x₁₁, x₁₀, x₀₁, x₀₀
- Frequencies of 11, 10, and 01 are known from the data, but frequency of 00 is unknown
- Multinomial is structured like the binomial
 - Probability of each outcome = probability part
 - Number of different ways to get it = counting part

$$p(H_i|N,q_i) = \binom{N}{y_i} q_1^{x_{11}} q_2^{x_{10}} q_3^{x_{01}} q_4^{x_{00}}$$

The multinomial probability distribution and likelihood function

History	Frequency	Probability
11	× ₁₁	q_1
10	× ₁₀	q ₂
01	× ₀₁	q ₃
00	× ₀₀	q ₄

 $p(H_i|N, q_i) = \binom{N}{y_i} q_1^{x_{11}} q_2^{x_{10}} q_3^{x_{01}} q_4^{x_{00}} \qquad L(q_i|N, H_i) = \binom{N}{y_i} q_1^{x_{11}} q_2^{x_{10}} q_3^{x_{00}} q_4^{x_{00}}$

Using encounter probability (p) to calculate probabilities of histories (q)

So	History	Frequency	Probability
	11	× ₁₁	рхр
$q_1 = p \times p$	10	× ₁₀	р x (1-р)
q ₂ = p x (1-p)	01	× ₀₁	(1-p) x p
$q_3 = (1-p) \times p$	00	×	(1-p) x (1-p)
$q_4 = (1-p) \times (1-p)$			

...need to estimate p

Estimating population size – summing frequencies

History	Frequency	
11	× ₁₁	
10	× ₁₀	
01	× ₀₁	
00	× ₀₀	

These are all the possible histories, which means that N is equal to the sum of the frequencies

We know x_{11} , x_{10} , x_{01} from the data

If we can estimate x_{oo} we can estimate N

Basic setup

8							
	History	Freq	Parametei	MLE	Probability	of histor <mark>y</mark>	
10142/019	11	50	р	0.5	0.25		
1000	10	50	f (00)	50	0.25		
	01	150			0.25		
CALIFIC WAY	00				0.25		
2							

We will be estimating the two values under MLE: p and f(00) (aka x_{00})

Starting values for p and f(00) are entered (any values, but better if close to final estimates)

Probability of histories are based on the current values of p and 1-p

Calculating the log-likelihood

- Now to convert the multinomial probability distribution into a log-likelihood function
- The "probability part" is easy

 $\log(q_1^{x_{11}}q_2^{x_{10}}q_3^{x_{01}}q_4^{x_{00}}) =$

 $x_{11}\log(q_1) + x_{10}\log(q_2) + x_{01}\log(q_3) + x_{00}\log(q_4)$

- For history 00, just use the initial guess for f(00) as the frequency x_{00}
- p is part of every q, so all depend on one of parameters we are estimating – no unneeded terms

The counting part is trickier...

• We can simplify this

$$\binom{N}{y_i} = \frac{N!}{x_{11}! x_{10}! x_{01}! x_{00}!}$$

 $\ln\left(\frac{N!}{x_{11}! x_{10}! x_{01}! x_{00}!}\right)$

Drop unneeded terms

 $\ln(N!) - \ln(x_{11}! x_{10}! x_{01}! x_{00}!)$

 $\ln((M_{t+1}+x_{00})!) - [\ln(x_{11}!) + \ln(x_{10}!) + \ln(x_{01}!) + \ln(x_{00}!)]$

$$\ln((M_{t+1}+x_{00})!) - \ln(x_{00}!) - To this$$

Problem: big numbers and computers

- Computers have limits on the number of digits they can store
- Exceeding the limit can lead to an error message (if you're lucky), or a silently incorrect answer (if you're unlucky)
- · We need to calculate factorials, which can be very big
- Excel can do factorials up to 170 any N over 170 will exceed that limit
- Fortunately, we don't actually need the factorial, we need the log of the factorial

The gammaln() function

 In Excel, you can calculate the log of a factorial by using the gammaln() function

 $ln(x_{00}!) = gammaln(x_{00} + 1)$

 $\ln((M_{t+1} + x_{00})!) = gammaln(M_{t+1} + x_{00} + 1)$

• We now have the second part needed for the log-likelihood in a form we can use in Excel

 $gammaln(M_{t+1} + x_{00} + 1) - gammaln(x_{00} + 1)$

Putting it together...

History	Freq		Parametei	MLE		Probability	of histor <mark>y</mark>	
11	50		р	0.5		0.25		
10	50		f(00)	50		0.25		
01	150					0.25		
00						0.25		
Mt+1	Mult coef	Portion L	Full LnLik		Sum of	the two		
250	1266.43	-415.888	850.54					
	◀				oarts			

Multinomial coefficient (counting part)

Probability part (sum of frequencies x In(probabilities))

Numeric solutions – Solver

- With LP, we calculated an **analytical** solution
 - Plugged in numbers to a formula, got an estimate
- With ML, it's common to use numeric solutions
 - The likelihood functions often can't be solved for parameters of interest
 - Instead, use a sophisticated form of trial and error to find estimates of p and f(00) that maximize the log-likelihood
 - Solutions found to a fixed (specified) level of precision
- The tool that Excel uses to do this is called Solver

What will happen...

2...by changing the estimates

	History	Freq		Parameter	MLE		Probability	r of histor <mark>y</mark>	
	11	50		р	0.5		0.25		
	10	50		f(00)	50		0.25		
	01	150					0.25		
	00						0.25		
	Mt+1	Mult coef	Portion L	Full LnLik		1 W/e v	vill tell S	Solver	
	250	1266.43	-415.888	850.54			e this as		
								sug	
-1	na probability of b	istory od	ump dap	nda an n		as poss			

The probability of history column depends on p

The mult coef cell depends on f(00)

Full LnLik depends on both, so as p and f(00) are varied Full LnLik will change – Solver stops when changes in p and f(00) no longer increase Full LnLik

And the results...

	History	Freq		Parameter	MLE	Probability	of histor <mark>y</mark>	
	11	50		р	0.33519	0.11236		
	10	50		f(00)	197.501	0.22284		
	01	150				0.22284		
	00					0.44197		
10.00 0.00 0.00	Mt+1	Mult coef	Portion L	Full LnLik				
	250	1437.87	-570.829	867.042				

Number of animals never captured, f(00) = 197.501Encounter probability is 0.335 Probability of never being seen (00) = 0.442 **Population size** is $M_{t+1} + f(00) = 447.5$

How did ML compare to LP?

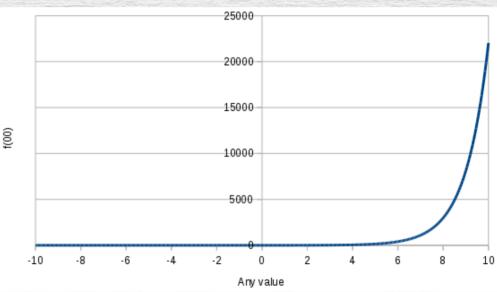
- LP
 - Estimate = 400
 - Never seen = 150
 - Encounter prob. = 0.25
- They aren't the same
- ML is better
 - Both p and f(00) are unknown, and the estimate depends on both
 - LP doesn't estimate f(00), and can be biased at low sample sizes

• ML

- Estimate = 447.5
- Never seen = 197.5
- Encounter prob. = 0.335

The log link

- The inverse function for the natural log is exp (it means, raise the base e to the power n)
- A negative exponent,
 e⁻ⁿ, is just 1/eⁿ
- So, exp(any number) is positive, negative numbers become increasing close to 0
- Having Solver change (any number), and use exp(any number) for f(00) keeps the estimates of f(00) over 0



Extensions, complications

- This is easy to extend to more capture events
- With more capture events we can ask questions like
 - Are initial capture probabilities different from recapture probabilities (trap happy, trap shy)?
 - Do capture probabilities change over time?
- We will look at these in lab next week