Likelihood-based model selection

Population abundance with more
than two capture periods

Testing hypotheses about trap responses



Extending the likelihood-based estimate
of population size

* Last time we used ML to estimate population size with two capture periods

— The probabilities of capture histories were modeled with a single encounter
probability

— Because of this, the probability of histories 01 and 10 had the same predicted
frequency

* We are going to extend the method to three capture periods today
- Eight possible capture histories: 111, 110, 101, 011, 100, 010, 001, 000
* This will allow us to test hypotheses about how our study is working,
specifically:
— Changes in detectability over time
— Trap response (trap happiness, trap shyness)



The basic model, M,

History t=1 t=2 1t1=3

This is the model
we used for two

111 P P P histories applied
to three
011 (1-p) P P —
single
encounter
001 (1-p) ( 1-p) P probability, p

Focus on these three possibilities — first captures at
t=1,t=2 ort=3, and re-captured every time



Setup for M,

A B C D E F G H I )
1 |History  Frequency Parametel MLE Betas Multinomial probability of history
2> oo1 40 P 0.5 0 0.125
3 010 19 0.125
4 [o11 22 0.125
5 (100 21 0.125
6 101 37 0.125
7 1110 17 f(000) 7.38906 2 0.125
g 111 29 0.125
9 000 7.3890561 N-hat 192.389 0.125
10
11 |Mt+1 Mult coeff. Prob. Part LnLikelihood
12 185 813.71483 -400.062 413.653

13
Single encounter probability, p
Initial values for betas entered
Now to maximize the LnLikelihood by changing the betas



Estimates for M,

A B C D E F
1 History  Freguency Parametel MLE Betas
2z Ir[]lijll 40 p 0.5072 0.01439
3 (010 19
4 011 22
5100 21
6 101 37
7 IF11EI 17 f(000) 24,6489 3.20473
g 111 29
9 Ir[]EIEI 24.648877 MN-hat 209.649
10
11  Mt+1 Mult coeff. Prob. Part LnlLikelihood
12 185 857.7386 -435.887 421.851

|

Encounter probability p = 0.5072
Does this fit the data well?
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Goodness of fit

* \We have a probability of each
capture history

 \We have an estimated
population size

* Multiplying the probabilities by
the population size gives an
expected frequency for each
history

* Frequencies observed not well
predicted by expected
frequencies — not a very good fit

LU

M-hat

A b

History  Freguency

001 40
‘010 19
‘011 22
"100 21
"101 37
"110 17
111 29
‘000 24.648877

209.649

-

1

Multinomi Expected

0.12318
0.12318
0.12677
0.12318
0.12677
0.12677
0.13048
0.11968

25.8235
25.8235
26.5778
25.8235
26.5778
26.5778
27.3541
25.0907



Mismatch between model and data

* With model M,, histories with the same

A B

1 History Frequency number of 0’s and 1’s have the same
2001 40 probability
3 010 19 : _
. o 22 e But, we see different frequencies for 001,
5100 21 010, 100, and for 011, 101, and 110
o 101 37
- e 7 * Mismatch could be due to:

111 29 - Random chance

000 24 648877

T e I s's)

2

- p that isn’t constant



Encounter probability can change over time

Male

* Animals can change activity patterns Amerear Coldlinolics

- Forage more during the breeding season
— Call more

* Can have changes in appearance
- Molting, shedding

* Environmental conditions can change
detectability

- Snowl/ice melt

- Leaves grow or are dropped e
Guess which is non-breeding...



Time varying encounter probability, M,
History t=1 t=2 1t1=3
111 P, P, P,
011 (-p) b, P,

001 (I-p,) (I-p) P

Each capture period has a different encounter probability

No response to trapping — subsequent captures are the
same as Initial



Setup for M,

A B C D E F
1 |History  Frequency Parameter MLE  Betas
2z rUDl 40 pl 0.26029 -0.5
3 rUlU 19 p2 0.26029 -0.5
4 '[]11 22 p3 0.26029 -0.5
5 1100 21
6 101 37
7 (110 17 f(000) 7.38906 2
8 111 29
9 000 N-hat 192.389
10
11 |Mt+1 Mult coefi Prob. Port LnLikelihood
12 185 &813.715 -507.2 306.515
13

Different encounter probability for each capture period

G

H I J
Multinomial probability of history
0.14242
0.14242
0.05012
0.14242
0.05012
0.05012
0.01763
0.40475

I made up the data to be time-varying, so we know this is the right model



Estimates for M,

A B C D E F G H I
1 History  Frequency Parameter MLE  Betas Multinom Expected
2 .-001 40 pl 0.50082 0.00165 0.17878 37.1255
3 (010 19 p2 0.41896 -0.1628 0.08022 16.6592
4 .-011 22 p3 0.6164 0.23495 0.12891 26.7691
5 (100 21 0.11163 23.1805
§ .-101 37 0.17937 37.2479
7 110 17 f(000) 22.6581 3.12052 0.08049 16.7142
8 .-111 29 0.12933 26.8574
9 (000 N-hat 207.658 0.11126 23.1043
10
11 Mt+1 Mult coefi Prob. Port LnLikelihood
12 185 853.441 -423.394 430.047

Expected frequencies look better
Now histories with same number of 1’s have different expected freqs



Trap response

» Behavioral response to trapping can be:

— Trappy happy = increased chance of detection after first
capture (usually attraction to baited traps)

- Trap shy = decreased chance of detection after first
capture (aversion to traps due to bad experience)

» Use of a different survey method after initial capture
can also affect encounter probability

— First capture is an actual capture so that a mark can be
applied

- Subsequent captures are re-sightings from a distance

* We need to know if this is happening, and if so
account for it




Trap response model, M,

History t=1 t=2 1t1=3
111 P C C

011 (1-p) P C

001 (1-p) (1-p) p

Initial captures are the same probability at each capture period (p)
But, after the first capture the probability changes (c)
What would the probability of history 0107



A B
1 |History  Frequency
> o001 40
3 010 19
4 To11 22
5 100 21
6 (101 37
7 110 17
g 111 29
o 000

10

C

Setup for M,

D E
Paramete MLE
p 0.26029
C 0.26029
f{000) 7.38906
N-hat 192.389

11 |Mt+1 Mult coef Prob. Port LnLikelihood

12 185 813.715

4

-507.2  306.515

F
Betas
-0.5
-0.5

G

H I J
Multinomial probability of history
0.14242266
0.14242266
0.05011513
0.14242266
0.05011513
0.05011513
0.01763431
0.40475232

Up to first capture, encounter probability is p, probability of no capture is (1-p)
After first capture, encounter probability is ¢, probability of no capture is (1-c)



Estimates for M,

A B C D : F
1 |History  Frequency Parametel MLE Betas
2 [oo1 40 p 0.42781 -0.14489
3 010 19 c 0.53815 0.07638
4 [o11 22
5 (100 21
6 101 37
7 110 17 £(000) 42.1456 3.74113
g 111 29
9 000 N-hat 227.146
10
11 Mt+1 Mult coef Prob. Port LnLikelihood
12 185 890.568 -467.087 423.48

13

G

H

I

Multinomial f Expected

0.14006595
0.11305491
0.13173338
0.09125282
0.10632924
0.10632924
0.12389652
0.18733796

31.8154
25.6799
29.9227
20.7277
24.1522
24.1522
28.1426

42.553

Better than M, but a couple of misfires — 110 and 101 have same expected

frequencies, but very different observed freqgs



The real model

* These are contrived data — random data generated with:
— Probability of capture of 0.5 for the first interval

— Probability of capture of 0.4 for the second interval
— Probability of capture of 0.6 for the third

 The model that came closest to these values was M,,
and it had the highest log likelihood

* Would we reach the correct conclusion with our analysis,
and pick this model? How do we compare models?



Comparing models

« M,, M,, M, represent three different hypotheses about encounter
probability

* All are "wrong’, in that all are incomplete
- In a contrived example, mismatches are due just to random variation

- In real data mismatches can also be due to unmeasured factors, only
treated as random variation because we don’t have information about them

« But, we should prefer to interpret the model that is most consistent
with the data — we can use the Method of Support to tell us
— Support for a model is measured with its likelihood
- The model best supported by the data will be the one we interpret



Likelihood as a measure of support

* Each capture model is at best an approximation of what is really happening =
the True Model

- The TM is a complete explanation for every 0 and 1

- So many factors determine every 0 and 1 that the TM is essentially unknowable

— But, our models approximate TM, and we should prefer models that are closest to the TM
» We will use “Akaike’s Information Criterion”, to decide which of our

approximations is best supported by the data

- AIC is a measure of relative distance to the TM
- We don’t know the TM for AIC to tell us which model is closest to TM

AIC =—21In( L(model|the data))+2 K K = number of estimated

parameters



Properties of AlC

* Only interpretable in comparison with other AIC values
- A relative measure of distance from TM, so smaller is better

« Every model compared has to use the same response data (i.e. the same set
of frequencies of capture histories)

« Balances model fit and model complexity
- -2In(L(model|data)) gets smaller the better the model fits the data

- 2K gets bigger the more parameters are added
(i.e. more complex the model is) Model

- Smallest AIC is obtained with a simple model Model fit complexity
that fits the data well

N

AIC =—2In (L (model|thedata))+2 K



AIlC values for our three models

Model -2InLikelihood 2K AlC

MO -843.7023538 4 -839.702
Mt -860.0937198 8 -852.094
Mb -846.9608798 6 -840.961

Which should be smallest?
Which is smallest?



Refinements to AlC

* For sample sizes with less than 40 observations per parameter
(n/K < 40), use AlC,

2K (K+1)
n—K-—1

n is the total number of captures

AIC = AIC+

« AIC, is AIC with an additional penalty applied for complex models —
the size of penalty is greater when n is small

- Complex models become less reliable when sample sizes are small

- Thus, adding more parameters should cost more when the sample size is
small



AICC for our models

Model -2InLikelihood 2K AlIC AlCc

MO -843.7023538 4 -839.702 -839.602
Mt -860.0937198 8 -852.094 -851.755
Mb -846.9608798 6 -840.961 -840.759

Like likelihoods, AIC values are only meaningful in comparison
to other AIC values

We can make the comparison easier...



AAIC

 To make comparison among AlC,_ values easier,
subtract the smallest AlIC, from all candidates under

consideration = AAIC_'s
- Best supported will have AAIC, of O

- AAIC_ between 4 and 7 indicate substantially reduced
support for a model relative to the best-supported

- AAIC, greater than 10 indicates the data doesn’t support
the model at all



AAICC for our models

Model -2InLikelihood 2K AlC AlCc AAIC
MO -843.7023538 4 -839.702 -839.602 12.15238
Mt -860.0937198 8 -852.094 -851.755 0
Mb -846.9608798 6 -840.961 -840.759 10.99554

M. is the best supported, and the other two have essentially no support

Based on these AAIC_values, we really only have to consider M as a
reasonable explanation for the data
M. is the model that generated the data, so AIC_worked!



Akaike weights

Allow us to quantify model uncertainty

If we collected new data, what are the chances that
each model would be best supported?

Based on the DAIC(,)'s of a set of models under
consideration :

D's that are in the exp (=5 4A)
“unsupported” range will = "
have very low weights 2 eXp <_§A>




Weights for our models

Model -2InLikelihood 2K AIC AlCc AAIC W

MO -843.7023538 4 -839.702 -839.602 12.15238 0.002
Mt -860.0937198 3 -852.094 -851.755 0 0.994
Mb -846.9608798 6 -840.961 -840.759 10.99554 0.004

Mt is the best supported, and we expect to select it
99.4% of the time if we repeated the experiment



Interpreting M,

* Encounter probability lowest at
the second trapping period,
highest in the third

* The population estimate is
207.658

* There were only 22.65
Individuals that were not
observed

D E
Parameter MLE
pl 0.50082
p2 0.41896
p3 0.6164
f(000) 22.6581

N-hat 207.658



Data with a trap response

* New contrived data set
— Probability of first capture is 0.6

— After first capture, probability of capture changes to
0.15 (happy, or shy?)

* We will fit the three models and see how they
compare



11
12

1
2
3
4
5
6
7
8
9
10
11
12

1
2

3

4
5
6
7
8
9

10

11

12

EE

A B C D E F

History  Frequency Parameter MLE Betas
‘001 17 p 0.18165 -0.69021
‘010 41
‘011 5
"100 93
"101 14
110 13 f(000) 225.044 5.41629
111 3
000 N-hat 411.044
Mt+1 Mult coeff. Prob. Part LnLikelihood

186 1069.3466 -584.367 484.98

A B C D E F
History  Frequency Parameter MLE Betas
‘001 17 pl 0.33537 -0.33553
‘010 41 p2 0.16905 -0.72336
011 5 p3 0.10634 -0.90646
"100 93
101 14
110 13 f(000) 180.764 5.19719
111 3
‘000 N-hat 366.764
Mt+1 Mult coefi Prob. Port LnLikelihood

186 1040.53 -524.864 515.662

A B c D E F
History  Frequency Parameter MLE Betas
lo01 17 p 0.63456 0.27248
lo10 41 c 0.13014 -0.83266
lo11 5
f100 93
101 14
f110 13 £(000) 9.03822 2.20146
11 3
To00 N-hat 195.038
Mt+1 Mult coeff Prob. Port LnLikelihood

186 824.104 -305.325 518.779

H I
Multinom Expected
0.12165 50.0039
0.12165 50.0039
0.027 11.0995
0.12165 50.0039
0.027 11.0995
0.027 11.0995
0.00599 2.46379
0.54804  225.27

H I
Multinom Expected
0.05873 21.539
0.10041 36.8256
0.01195 4.38182
0.24904 91.339
0.02963 10.8683
0.05066 18.5817
0.00603 2.211
0.49355 181.018

H I
Multinomial p Expected
0.08474247  16.528
0.20171513 39.3422
0.03017788 5.88584
0.48014878 93.6474
0.07183335 14.0102
0.07183335 14.0102
0.01074673 2.09602
0.04880231 9.51831



Model
MO
Mt
Mb

Which is best supported?

-2InLikelihood 2K AlC AlCc AAIC
-969.9601712 4 -965.96  -965.86 65.459624
-1031.324337 3 -1023.32 -1022.99 8.371057
-1037.558092 6 -1031.56 -1031.36 0

0.000
0.015
0.985



Interpreting M_

* Encounter probability decreased after the first
capture (trap shy)

D E F

) --here Were 9 anlmals Parameter MLE Betas
0.63456 0.27248
that were never seen : 013014 0.5326¢

* The population estimate
was 195

f(000) 9.03822 2.20146

N-hat 195.038



What if multiple models are well
supported?

* The results are not always this clear

- M, and M, don’t always yield distinctly different results, because there is a
time component to M,

- With smaller sample sizes, the more complex M, and M, models may not
have sufficiently big differences in likelihood to be better supported than M,
* If more than one model is well supported, say so!

- Separating the well-supported from the poorly supported models is
worthwhile, even if two or more are well supported

— If the data don't differentiate between the competing hypotheses, you don't
want to pretend otherwise



FYI: time varying with trap response (M. )
History t =1 t=2 t=3

111 p, c c

2 3

011 (1-p,) P, C

3
001  (1-p) (I-p) P,

It is also possible to have a combination of time-varying encounter probability, and a
trap response

This is the most complex model, with & parameters, and it’s difficult to fit with only
three capture periods...we won't work with this one
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