Likelihood-based model selection

Population abundance with more than two capture periods

Testing hypotheses about trap responses

Extending the likelihood-based estimate of population size

- Last time we used ML to estimate population size with two capture periods
 - The probabilities of capture histories were modeled with a single encounter probability
 - Because of this, the probability of histories 01 and 10 had the same predicted frequency
- · We are going to extend the method to three capture periods today
 - Eight possible capture histories: 111, 110, 101, 011, 100, 010, 001, 000
- This will allow us to test hypotheses about how our study is working, specifically:
 - Changes in detectability over time
 - Trap response (trap happiness, trap shyness)

The basic model, M₀

History	t = 1	t = 2	t = 3	This is the model		
111	р	р	р	histories applied to three		
011	(1-p)	р	р	A single		
001	(1-p)	(1-p)	р	encounter probability, p		

Focus on these three possibilities – first captures at t = 1, t = 2, or t = 3, and re-captured every time

Setup for M₀

	Α	В	C	D	E	F	G	Н	Ι	J	
1	History	Frequency		Parameter	MLE	Betas		Multinomi	al probabil	ity of histo	ry
2	001	40		р	0.5	0		0.125			
3	010	19						0.125			
4	011	22						0.125			
5	100	21						0.125			
6	101	37						0.125			
7	110	17		f(000)	7.38906	2		0.125			
8	111	29						0.125			
9	000	7.3890561		N-hat	192.389			0.125			
10											
11	Mt+1	Mult coeff.	Prob. Part	LnLikeliho	od						
12	185	813.71483	-400.062	413.653							
13											

Single encounter probability, p Initial values for betas entered

Now to maximize the LnLikelihood by changing the betas

Estimates for M₀

	Α	В	С	D	E	F	G	Н	Ι	
1	History	Frequency		Parameter	MLE	Betas		Multinomi	Expected	
2	001	40		р	0.5072	0.01439		0.12318	25.8235	
3	010	19						0.12318	25.8235	
4	011	22						0.12677	26.5778	
5	100	21						0.12318	25.8235	
6	101	37						0.12677	26.5778	
7	110	17		f(000)	24.6489	3.20473		0.12677	26.5778	
8	111	29						0.13048	27.3541	
9	000	24.648877		N-hat	209.649			0.11968	25.0907	
10										
11	Mt+1	Mult coeff.	Prob. Part	LnLikeliho	od					
12	185	857.7386	-435.887	421.851						
10										

Encounter probability p = 0.5072 Does this fit the data well?

Goodness of fit

- We have a probability of each capture history
- We have an estimated population size
- Multiplying the probabilities by the population size gives an expected frequency for each history
- Frequencies observed not well predicted by expected frequencies – not a very good fit

	N-	hat	209.649			
А	В			П	1	Ï
History	Frequency			Multinomi	Expected	
001	40			0.12318	25.8235	
010	19			0.12318	25.8235	
011	22			0.12677	26.5778	
100	21			0.12318	25.8235	
101	37			0.12677	26.5778	Ī
110	17			0.12677	26.5778	Ī
111	29			0.13048	27.3541	Ĩ
000	24.648877			0.11968	25.0907	Î
			and and a second second			t

Mismatch between model and data

	Α	В	
1	History	Frequency	
2	001	40	
3	010	19	
4	011	22	
5	100	21	
6	101	37	
7	110	17	
8	111	29	
9	000	24.648877	
10			

- With model M₀, histories with the same number of 0's and 1's have the same probability
- But, we see different frequencies for 001, 010, 100, and for 011, 101, and 110
- Mismatch could be due to:
 - Random chance
 - p that isn't constant

Encounter probability can change over time

- Animals can change activity patterns
 - Forage more during the breeding season
 - Call more
- Can have changes in appearance
 - Molting, shedding
- Environmental conditions can change detectability
 - Snow/ice melt
 - Leaves grow or are dropped

Male American Goldfinches

Guess which is non-breeding...

Time varying encounter probability, M₊

History	t = 1	t = 2	t = 3
111	p ₁	p ₂	p ₃
011	(1-p ₁)	p ₂	p ₃
001	(1-p ₁)	(1-p ₂)	p ₃

Each capture period has a different encounter probability No response to trapping – subsequent captures are the same as initial

Setup for M_t

	A	B	С	D	E	F	G	Н	Ι	J	ŀ
1	History	Frequency	,	Parameter	MLE	Betas		Multinomi	Multinomial probability of histo		ory
2	001	40		p1	0.26029	-0.5		0.14242			
3	010	19		p2	0.26029	-0.5		0.14242			
4	011	22		р3	0.26029	-0.5		0.05012			
5	100	21						0.14242			
6	101	37						0.05012			
7	110	17		f(000)	7.38906	2		0.05012			
8	111	29						0.01763			
9	000			N-hat	192.389			0.40475			
10											
11	Mt+1	Mult coeff	Prob. Port	LnLikeliho	od						
12	185	813.715	-507.2	306.515							
13											

Different encounter probability for each capture period

I made up the data to be time-varying, so we know this is the right model

Estimates for M₊

А	В	С	D	E	F	G	Н	Ι
History	Frequency	,	Parameter	MLE	Betas		Multinom	Expected
001	40		p1	0.50082	0.00165		0.17878	37.1255
010	19		p2	0.41896	-0.1628		0.08022	16.6592
011	22		р3	0.6164	0.23495		0.12891	26.7691
100	21						0.11163	23.1805
101	37						0.17937	37.2479
110	17		f(000)	22.6581	3.12052		0.08049	16.7142
111	29						0.12933	26.8574
000			N-hat	207.658			0.11126	23.1043
Mt+1	Mult coeff	Prob. Port	LnLikeliho	od				
185	853.441	-423.394	430.047					
	A History 001 010 011 100 101 110 111 000 Mt+1 185	A B History Frequency 001 40 010 19 011 22 100 21 101 37 110 17 111 29 000	A B C History Frequency 001 40 001 40 10 10 010 19 10 10 100 21 10 10 101 37 10 11 110 17 10 17 111 29 10 10 000 10 10 10 111 29 10 10 111 29 10 10 111 29 10 10 111 29 10 10 111 29 10 10 111 29 10 10 111 29 10 10 111 29 10 10 111 10 10 10 111 10 10 10 111 10 10 10 111 10	A B C D History Frequency Parameter 001 40 p1 010 19 p2 011 22 p3 100 21 r 101 37 r 110 17 f(000) 111 29 r 000 r r 000 r r Mt+1 Mult coeff Prob. Port 185 853.441 -423.394 430.047	A B C D E History Frequency Paramete MLE 001 40 p1 0.50082 010 19 p2 0.41896 011 22 p3 0.6164 100 21 r p3 0.6164 101 37 r r r 110 177 f(000) 22.6581 111 29 r r r 000 r r r r Mt+1 Mult coef Prob. Port LnLikelihout 185 853.441 -423.394 430.047	A B C D E F History Frequency Parameter MLE Betas 001 40 p1 0.50082 0.00165 010 119 p2 0.41896 -0.1628 011 22 p3 0.6164 0.23495 100 21 p3 0.6164 0.23495 100 21 p3 0.6164 0.23495 101 37 p3 p3 p3 p3 101 137 p1 p2 p3 p3 p3 110 17 p1 p3 <	A B C D E F G History Frequency Paramete MLE Betas 001 001 40 p1 0.50082 0.00165 0.00165 010 19 p2 0.41896 -0.1628 0.011 011 22 p3 0.6164 0.23495 0.011 100 21 r r r r r 101 37 r r r r r 110 17 f(000) 22.6581 3.12052 r 111 29 r r r r r 000 r N-hat 207.658 r r r Mt+1 Mult coeff Prob. Port LnLikelihood r r r r 185 853.441 -423.394 430.047 r r r r	A B C D E F G H History Frequency Paramete MLE Betas Multinom 001 40 p1 0.50082 0.00165 0.17878 010 119 p2 0.41896 -0.1628 0.08022 011 22 p3 0.6164 0.23495 0.12891 100 21 ref G 0.17937 101 37 ref G 0.17937 110 117 f(000) 22.6581 3.12052 0.08049 111 29 ref ref G 0.12933 000 Interpretine N-hat 207.658 Interpretine 0.11126 Mt+1 Mult coef ref ref Interpretine Interpretine Interpretine 185 853.441 -423.394 430.047 Interpretine Interpretine Interpretine Interpretine

Expected frequencies look better

Now histories with same number of 1's have different expected freqs

Trap response

- Behavioral response to trapping can be:
 - Trappy happy = increased chance of detection after first capture (usually attraction to baited traps)
 - Trap shy = decreased chance of detection after first capture (aversion to traps due to bad experience)
- Use of a different survey method after initial capture can also affect encounter probability
 - First capture is an actual capture so that a mark can be applied
 - Subsequent captures are re-sightings from a distance
- We need to know if this is happening, and if so account for it

Trap response model, M_b

History	t = 1	t = 2	t = 3
111	р	С	С
011	(1-p)	р	С
001	(1-p)	(1-p)	р

Initial captures are the same probability at each capture period (p) But, after the first capture the probability changes (c) What would the probability of history 010?

Setup for M_b

	Α	В	С	D	E	F	G	Н	Ι	J
1	History	Frequency	/	Parameter	MLE	Betas		Multinomial p	Multinomial probability of his	
2	001	40		р	0.26029	-0.5		0.14242266		
3	010	19		с	0.26029	-0.5		0.14242266		
4	011	22						0.05011513		
5	100	21						0.14242266		
6	101	37						0.05011513		
7	110	17		f(000)	7.38906	2		0.05011513		
8	111	29						0.01763431		
9	000			N-hat	192.389			0.40475232		
10										
11	Mt+1	Mult coef	Prob. Port	LnLikeliho	od					
12	185	813.715	-507.2	306.515						

Up to first capture, encounter probability is p, probability of no capture is (1-p) After first capture, encounter probability is c, probability of no capture is (1-c)

Estimates for M_b

	Α	В	С	D	E	F	G	Н	Ι	
1	History	Frequency	r	Parameter	MLE	Betas		Multinomial p	Expected	
2	001	40		р	0.42781	-0.14489		0.14006595	31.8154	
3	010	19		с	0.53815	0.07638		0.11305491	25.6799	
4	011	22						0.13173338	29.9227	
5	100	21						0.09125282	20.7277	
6	101	37						0.10632924	24.1522	
7	110	17		f(000)	42.1456	3.74113		0.10632924	24.1522	
8	111	29						0.12389652	28.1426	
9	000			N-hat	227.146			0.18733796	42.553	
10										
11	Mt+1	Mult coef	Prob. Port	LnLikeliho	od					
12	185	890.568	-467.087	423.48						
13										

Better than M_o , but a couple of misfires – 110 and 101 have same expected frequencies, but very different observed freqs

The real model

- These are contrived data random data generated with:
 - Probability of capture of 0.5 for the first interval
 - Probability of capture of 0.4 for the second interval
 - Probability of capture of 0.6 for the third
- The model that came closest to these values was M_t, and it had the highest log likelihood
- Would we reach the correct conclusion with our analysis, and pick this model? How do we compare models?

Comparing models

- M₀, M_t, M_b represent three different hypotheses about encounter probability
- All are "wrong", in that all are incomplete
 - In a contrived example, mismatches are due just to random variation
 - In real data mismatches can also be due to unmeasured factors, only treated as random variation because we don't have information about them
- But, we should prefer to interpret the model that is most consistent with the data – we can use the Method of Support to tell us
 - Support for a model is measured with its likelihood
 - The model best supported by the data will be the one we interpret

Likelihood as a measure of support

- Each capture model is at best an approximation of what is really happening = the True Model
 - The TM is a complete explanation for every 0 and 1
 - So many factors determine every 0 and 1 that the TM is essentially unknowable
 - But, our models approximate TM, and we should prefer models that are closest to the TM
- We will use "Akaike's Information Criterion", to decide which of our approximations is best supported by the data
 - AIC is a measure of relative distance to the TM
 - We don't know the TM for AIC to tell us which model is closest to TM

 $AIC = -2\ln(L(model|the data)) + 2K$

K = *number* of *estimated parameters*

Properties of AIC

- Only interpretable in comparison with other AIC values
 - A relative measure of distance from TM, so smaller is better
- Every model compared has to use the same response data (i.e. the same set of frequencies of capture histories)
- Balances model fit and model complexity
 - -2ln(L(model|data)) gets smaller the better the model fits the data
 - 2K gets bigger the more parameters are added (i.e. more complex the model is)
- Smallest AIC is obtained with a simple model Model fit that fits the data well

Model complexity

 $AIC = -2\ln(L(model|thedata)) + 2K$

AIC values for our three models

Model	-2lnLikelihood	2K	AIC
M0	-843.7023538	4	-839.702
Mt	-860.0937198	8	-852.094
Mb	-846.9608798	6	-840.961

Which should be smallest? Which is smallest?

Refinements to AIC

 For sample sizes with less than 40 observations per parameter (n/K < 40), use AIC_c

$$AIC_{c} = AIC + \frac{2K(K+1)}{n-K-1}$$

n is the total number of captures

- AIC_c is AIC with an additional penalty applied for complex models the size of penalty is greater when n is small
 - Complex models become less reliable when sample sizes are small
 - Thus, adding more parameters should cost more when the sample size is small

$\rm AIC_{c}$ for our models

Model	-2lnLikelihood	2K	AIC	AICc
M0	-843.7023538	4	-839.702	-839.602
Mt	-860.0937198	8	-852.094	-851.755
Mb	-846.9608798	6	-840.961	-840.759

Like likelihoods, AIC values are only meaningful in comparison to other AIC values We can make the comparison easier...

ΔAIC

- To make comparison among AIC_c values easier, subtract the smallest AIC_c from all candidates under consideration = ΔAIC_c 's
 - Best supported will have ΔAIC_c of 0
 - ΔAIC_c between 4 and 7 indicate substantially reduced support for a model relative to the best-supported
 - ΔAIC_c greater than 10 indicates the data doesn't support the model at all

$\Delta \text{AIC}_{\rm c}$ for our models

Model	-2lnLikelihood	2К	AIC	AICc	ΔΑΙΟ
M0	-843.7023538	4	-839.702	-839.602	12.15238
Mt	-860.0937198	8	-852.094	-851.755	0
Mb	-846.9608798	6	-840.961	-840.759	10.99554

 M_t is the best supported, and the other two have essentially no support Based on these ΔAIC_c values, we really only have to consider M_t as a reasonable explanation for the data M_t is the model that generated the data, so AIC_c worked!

Akaike weights

- Allow us to quantify model uncertainty
- If we collected new data, what are the chances that each model would be best supported?
- Based on the DAIC(_c)'s of a set of models under consideration
- D's that are in the "unsupported" range will have very low weights

$$\exp\left(-\frac{1}{2}\Delta_i\right)$$

$$w_i = \frac{1}{\sum \exp\left(-\frac{1}{2}\Delta\right)}$$

Weights for our models

Model	-2lnLikelihood	2K	AIC	AICc	ΔΑΙΟ	W
M0	-843.7023538	4	-839.702	-839.602	12.15238	0.002
Mt	-860.0937198	8	-852.094	-851.755	0	0.994
Mb	-846.9608798	6	-840.961	-840.759	10.99554	0.004

Mt is the best supported, and we expect to select it 99.4% of the time if we repeated the experiment

Interpreting M_t

- Encounter probability lowest at the second trapping period, highest in the third
- The population estimate is 207.658
- There were only 22.65 individuals that were not observed

D	E
Parameter	MLE
p1	0.50082
p2	0.41896
р3	0.6164
f(000)	22.6581
N-hat	207.658

Data with a trap response

- New contrived data set
 - Probability of first capture is 0.6
 - After first capture, probability of capture changes to 0.15 (happy, or shy?)
- We will fit the three models and see how they compare

R /	
	r

		А	В	С	D		E	F		G	Н	I	
	1	History	Frequency		Param	neter MLE		Betas			Multinom	Expected	
	2	001	17		р	0.1	8165	-0.690	021		0.12165	50.0039	
114	3	010	41								0.12165	50.0039	
	4	011	5								0.027	11.0995	
	5	100	93								0.12165	50.0039	Π
	6	101	14								0.027	11.0995	
	7	110	13		f(000)	225	5.044	5.416	529		0.027	11.0995	
	8	111	3								0.00599	2.46379	
	9	000			N-hat	41:	L.044				0.54804	225.27	
	10												
	11	Mt+1	Mult coeff.	Prob. Pa	art LnLike	lihood							
	12	186	1069.3466	-584.3	367 484	1.98							
		٨	P	C	D	E		E	I	G	L	T	
	1	History	Frequency		Parame	ter MI	F	Betas		U	Multinom	Expected	
	2	001	17		p1	0.335	37	-0.335	53		0.05873	21.539	
	3	010	41		p2	0.169	05	-0.723	36		0.10041	36.8256	1
	4	011	5		p2	0.106	534	-0.9064	46		0.01195	4.38182	
	5	100	93		po	0.200		0.500			0.24904	91.339	
	6	101	14								0.02963	10,8683	
	7	110	13		f(000)	180	764	5 197	19		0.05066	18 5817	
	8	111	3			100.		0.207.			0.00603	2,211	
	9	000	J		N-hat	366	764				0.49355	181.018	
	10										0115000	1011010	
	11	Mt+1	Mult coeff	Prob. Po	rt I nI ikeli	hood							
	12	18	5 1040.53	-524.86	4 515.6	62							
													4
		A	В	С	D	E		F	G		Н	Ι	_
	1	History	Frequency		Parameter	MLE	Bet	as		Mu	ultinomial p Ex	xpected	
	2	001	17		р	0.6345	5 0.	27248		0.	08474247	16.528	
	3	010	41		с	0.1301	4 -0.	83266		0.	20171513	39.3422	
	4	011	5				_			0.	03017788	5.88584	
	5	100	93							0.	48014878	93.6474	
	6	101	14				_			0.	07183335	14.0102	
	7	110	13		t(000)	9.0382	2 2.	20146		0.	07183335	14.0102	
	8	111	3		AL har	105.00	-			0.	01074673	2.09602	
	9	000			N-hat	195.03	5			0.	04880231	9.51831	
	10	N 44 - 1	Mult cooff D	rah Drat	Latitality -	a d				_			-
	11	100	Wult coeff P	POR 225	E10 770	ua	-			_			
	12	186	824.104 -	505.325	518.779								

Which is best supported?

Model	-2lnLikelihood	2K	AIC	AICc	ΔΑΙΟ	w
M0	-969.9601712	4	-965.96	-965.86	65.49624	0.000
Mt	-1031.324337	8	-1023.32	-1022.99	8.371057	0.015
Mb	-1037.558092	6	-1031.56	-1031.36	0	0.985

Interpreting M_b

- Encounter probability decreased after the first capture (trap shy)
- There were 9 animals that were never seen
- The population estimate was 195

D	E	F	
Parameter	MLE	Betas	
р	0.63456	0.27248	
с	0.13014	-0.83266	
f(000)	9.03822	2.20146	
N-hat	195.038		

What if multiple models are well supported?

- The results are not always this clear
 - M_b and M_t don't always yield distinctly different results, because there is a time component to M_b
 - With smaller sample sizes, the more complex M_t and M_b models may not have sufficiently big differences in likelihood to be better supported than M₀
- If more than one model is well supported, say so!
 - Separating the well-supported from the poorly supported models is worthwhile, even if two or more are well supported
 - If the data don't differentiate between the competing hypotheses, you don't want to pretend otherwise

FYI: time varying with trap response (M_{tb})

History	t = 1	t = 2	t = 3
111	p ₁	C ₂	C ₃
011	(1-p ₁)	p ₂	C ₃
001	(1-p ₁)	(1-p ₂)	p ₃

It is also possible to have a combination of time-varying encounter probability, and a trap response

This is the most complex model, with 5 parameters, and it's difficult to fit with only three capture periods...we won't work with this one