
Likelihood-based model selection

Population abundance with more
than two capture periods

Testing hypotheses about trap responses



Extending the likelihood-based estimate 
of population size

● Last time we used ML to estimate population size with two capture periods
– The probabilities of capture histories were modeled with a single encounter 

probability
– Because of this, the probability of histories 01 and 10 had the same predicted 

frequency

● We are going to extend the method to three capture periods today
– Eight possible capture histories: 111, 110, 101, 011, 100, 010, 001, 000

● This will allow us to test hypotheses about how our study is working, 
specifically:
– Changes in detectability over time
– Trap response (trap happiness, trap shyness)



The basic model, M
0

History t  = 1 t  = 2 t  = 3

111 p p p

011 (1-p) p p

001 (1-p) (1-p) p

Focus on these three possibilities – first captures at 
t = 1, t = 2, or t = 3, and re-captured every time

This is the model 
we used for two 
histories applied 
to three

A single 
encounter 
probability, p



Single encounter probability, p

Initial values for betas entered

Now to maximize the LnLikelihood by changing the betas

Setup for M
0



Encounter probability p = 0.5072

Does this fit the data well?

Estimates for M
0



Goodness of fit
● We have a probability of each 

capture history
● We have an estimated 

population size
● Multiplying the probabilities by 

the population size gives an 
expected frequency for each 
history

● Frequencies observed not well 
predicted by expected 
frequencies – not a very good fit



Mismatch between model and data

● With model M0, histories with the same 
number of 0’s and 1’s have the same 
probability

● But, we see different frequencies for 001, 
010, 100, and for 011, 101, and 110

● Mismatch could be due to:
– Random chance
– p that isn’t constant



Encounter probability can change over time

● Animals can change activity patterns
– Forage more during the breeding season
– Call more

● Can have changes in appearance
– Molting, shedding

● Environmental conditions can change 
detectability
– Snow/ice melt
– Leaves grow or are dropped

Male

American Goldfinches

Guess which is non-breeding...



Time varying encounter probability, M
t

History t  = 1 t  = 2 t  = 3

111 p
1

p
2

p
3

011 (1-p
1
) p

2
p

3

001 (1-p
1
) (1-p

2
) p

3

Each capture period has a different encounter probability

No response to trapping – subsequent captures are the 
same as initial



Setup for M
t

Different encounter probability for each capture period

I made up the data to be time-varying, so we know this is the right model



Estimates for M
t

Expected frequencies look better

Now histories with same number of 1’s have different expected freqs



Trap response
● Behavioral response to trapping can be:

– Trappy happy = increased chance of detection after first 
capture (usually attraction to baited traps)

– Trap shy = decreased chance of detection after first 
capture (aversion to traps due to bad experience)

● Use of a different survey method after initial capture 
can also affect encounter probability
– First capture is an actual capture so that a mark can be 

applied
– Subsequent captures are re-sightings from a distance

● We need to know if this is happening, and if so 
account for it



Trap response model, M
b

History t  = 1 t  = 2 t  = 3

111 p c c

011 (1-p) p c

001 (1-p) (1-p) p

Initial captures are the same probability at each capture period (p)

But, after the first capture the probability changes (c)

What would the probability of history 010?



Setup for M
b

Up to first capture, encounter probability is p, probability of no capture is (1-p)

After first capture, encounter probability is c, probability of no capture is (1-c)



Estimates for M
b

Better than M
0
, but a couple of misfires – 110 and 101 have same expected 

frequencies, but very different observed freqs



The real model

● These are contrived data – random data generated with:
– Probability of capture of 0.5 for the first interval
– Probability of capture of 0.4 for the second interval
– Probability of capture of 0.6 for the third

● The model that came closest to these values was Mt, 
and it had the highest log likelihood

● Would we reach the correct conclusion with our analysis, 
and pick this model? How do we compare models?



Comparing models

● M0, Mt, Mb represent three different hypotheses about encounter 
probability

● All are “wrong”, in that all are incomplete
– In a contrived example, mismatches are due just to random variation
– In real data mismatches can also be due to unmeasured factors, only 

treated as random variation because we don’t have information about them

● But, we should prefer to interpret the model that is most consistent 
with the data – we can use the Method of Support to tell us
– Support for a model is measured with its likelihood
– The model best supported by the data will be the one we interpret



Likelihood as a measure of support
● Each capture model is at best an approximation of what is really happening = 

the True Model
– The TM is a complete explanation for every 0 and 1
– So many factors determine every 0 and 1 that the TM is essentially unknowable
– But, our models approximate TM, and we should prefer models that are closest to the TM

● We will use “Akaike’s Information Criterion”, to decide which of our 
approximations is best supported by the data
– AIC is a measure of relative distance to the TM
– We don’t know the TM for AIC to tell us which model is closest to TM

AIC=−2 ln(L(model∣the data))+2K K = number of estimated 
parameters



Properties of AIC
● Only interpretable in comparison with other AIC values

– A relative measure of distance from TM, so smaller is better

● Every model compared has to use the same response data (i.e. the same set 
of frequencies of capture histories)

● Balances model fit and model complexity
– -2ln(L(model|data)) gets smaller the better the model fits the data
– 2K gets bigger the more parameters are added 

(i.e. more complex the model is)

● Smallest AIC is obtained with a simple model 
that fits the data well

AIC=−2ln (L(model∣thedata))+2K

Model fit

Model

complexity



AIC values for our three models

Which should be smallest?
Which is smallest?



Refinements to AIC

● For sample sizes with less than 40 observations per parameter 
(n/K < 40), use AICc

● AICc is AIC with an additional penalty applied for complex models – 
the size of penalty is greater when n is small
– Complex models become less reliable when sample sizes are small
– Thus, adding more parameters should cost more when the sample size is 

small

AIC c=AIC+
2K (K +1)
n−K−1

n is the total number of captures



AIC
c
 for our models

Like likelihoods, AIC values are only meaningful in comparison 
to other AIC values

We can make the comparison easier...



DAIC

● To make comparison among AICc values easier, 
subtract the smallest AICc from all candidates under 
consideration = DAICc's 
– Best supported will have DAICc of 0

– DAICc between 4 and 7 indicate substantially reduced 
support for a model relative to the best-supported 

– DAICc greater than 10 indicates the data doesn’t support 
the model at all



DAIC
c
 for our models

M
t
 is the best supported, and the other two have essentially no support

Based on these DAIC
c
 values, we really only have to consider M

t
 as a 

reasonable explanation for the data

M
t
 is the model that generated the data, so AIC

c
 worked!



Akaike weights

● Allow us to quantify model uncertainty
● If we collected new data, what are the chances that 

each model would be best supported?
● Based on the DAIC(c)'s of a set of models under 

consideration
● D's that are in the 

“unsupported” range will 
have very low weights

w i=
exp −

1
2

 i

∑ exp −
1
2





Weights for our models

Mt is the best supported, and we expect to select it 
99.4% of the time if we repeated the experiment



Interpreting M
t

● Encounter probability lowest at 
the second trapping period, 
highest in the third

● The population estimate is 
207.658

● There were only 22.65 
individuals that were not 
observed



Data with a trap response

● New contrived data set
– Probability of first capture is 0.6
– After first capture, probability of capture changes to 

0.15 (happy, or shy?)

● We will fit the three models and see how they 
compare



M
0

M
t

M
b



Which is best supported?



Interpreting M
b

● Encounter probability decreased after the first 
capture (trap shy)

● There were 9 animals 
that were never seen

● The population estimate 
was 195



What if multiple models are well 
supported?

● The results are not always this clear
– Mb and Mt don’t always yield distinctly different results, because there is a 

time component to Mb

– With smaller sample sizes, the more complex Mt and Mb models may not 
have sufficiently big differences in likelihood to be better supported than M0

● If more than one model is well supported, say so!
– Separating the well-supported from the poorly supported models is 

worthwhile, even if two or more are well supported
– If the data don’t differentiate between the competing hypotheses, you don’t 

want to pretend otherwise



FYI: time varying with trap response (M
tb
)

History t  = 1 t  = 2 t  = 3

111 p
1

c
2

c
3

011 (1-p
1
) p

2
c

3

001 (1-p
1
) (1-p

2
) p

3

It is also possible to have a combination of time-varying encounter probability, and a 
trap response

This is the most complex model, with 5 parameters, and it’s difficult to fit with only 
three capture periods...we won’t work with this one
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