Demographic monitoring

The state of the art

- Demographic monitoring is used to assess population trends using estimates of survival and reproduction
- It is much more informative than statistical trend estimation because:
 - The causes of population change are modeled explicitly
 - The relative effect of different demographic parameters on rates of population change can be assessed
 - It's possible to accurately estimate growth rate under circumstances that cause problems with trend analysis

The basic approach

- We want to know if a population is stable (ΔN = 0), increasing (ΔN > 0), or decreasing (ΔN < 0)
- Population change is due to a balance between:
 - Births + Immigration, and Deaths + Emigration
 - BIDE model: $\Delta N = B + I D E$
- If the population is geographically closed, there are no immigrants or emigrants
 - BD model: $\Delta N = B D$
- To understand population change, minimally we need to know births and deaths
 - In a stable population, births balance deaths
 - In changing populations births are greater than deaths (increasing), or births are less than deaths (decreasing)

Demographic rates and continuous growth

$$\frac{dN}{dt} = rN$$

 $\frac{dN}{Ndt} = b - d = r$

$$N_t = N_0 e^{rt}$$

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Exponential growth rate, r, is a balance between per-capita birth and death rate

Balancing births and deaths

- Birth and death rate are per-capita numbers
 - Births per individual = b \leftarrow a positive decimal number
 - Deaths per individual = d ← a probability
- Intrinsic rate of increase is r = b-d
 - Values of r > 0 are increases
 - Values of r < 0 are decreases
- r is used for models of change in continuous time

Continuous growth with environmental resistance

- Populations can't grow exponentially for long
 - Density increase → density-dependent reduction in b, increase in d
- If the population...
 - Is in an area with a fixed capacity to support a population indefinitely (when N = K, carrying capacity)
 - Decreases in growth rate with each added individual
- ...the population will exhibit logistic growth

 $\frac{dN}{dt} = rN\left(\frac{K-N}{K}\right)$

$$N_t = \frac{K}{1 + [(K - N_0)/N_0]e^{-rt}}$$

Discrete time

- Most species have some degree of seasonality in their reproduction and mortality
 - Distinct breeding seasons

Sheep on

Tasmania

- Periods of harsh conditions, limited food
- Important distinction continuous time models aren't capable of representing some real phenomena that discrete time models can

Caribou on St. Paul Island, AK

Discrete time models use difference equations

- Predict population size at discrete time steps, usually one year at a time
- Changes in population size between the time points not modeled
- The natural measure of growth rate for discrete growth is the finite rate of increase = $\lambda = N_t/N_{t+1}$
- What is λ in: A growing population? A declining population? A stable population?

 $N_{t+1} = \lambda$

 $N_{t+1} = \lambda N_t$

 N_{t}

Figure 1.2 Discrete population growth. In this example, births are pulsed at the beginning of the year, and deaths occur continuously.

Geometric growth

- Growth without environmental resistance in discrete time is called geometric growth
- We can predict the population with $N_t = \lambda^t N_0$
- But, can't grow at a geometric rate for long
- In the presence of environmental resistance, the model becomes:

Does this matter? To CougarCourses...

Discrete-time with low r_d looks logistic

With a positive growth rate that is not very big, looks just like continuous time

Overshooting K is possible

Big growth rates lead to deterministic chaos

Discrete logistic growth: rd = 2.9

Time

Discrete-time models are the most common in monitoring

- Discrete time models are most appropriate for species with seasonal reproduction, or seasonally high mortality
- The measure of growth rate will be λ
- We will need measures of births per individual and survival (1-deaths per individual) to estimate λ
- Today we will focus on reproduction

Reproduction terminology

- Fertility = number of offspring per mature female
- Fecundity = viable offspring per mature (reproductive age) female
 - Fertility with neonate mortality subtracted
- Birth rate (natality) = number of offspring per individual in the population (of all ages and sexes)
- Recruitment = number of viable offspring per individual in the population
 - Birth rate neonate mortality

Example: raptors

Measuring raptor reproduction

- Breeding happens in stages:
 - Pair formation, territory occupancy
 - Nest building
 - Egg laying
 - Hatching
 - Rearing
 - Fledging
- Measuring any one will give you useful information about reproduction
- Measuring all of them will tell you where reproductive problems are occurring

Territory occupancy, nest construction

- Pre-breeding
- Count of the number of territories found
 - Observing pairs, defending an area from conspecifics
- Many raptors re-use territories, so occupancy is useful as a measure of re-use
 - If an increasing number of territories are not re-used, indicate a declining breeding population
- Nest construction/maintenance behavior indicates intention to breed
 - Number of territories with nests / total territories can indicate a change in readiness to breed over time

Looking into nests

- From the ground, possible to establish that a pair is incubating, that chicks have hatched, and how many fledge
- But, measuring clutch size, hatching success, loss of eggs or nestlings all require looking into the nest
- Difficult to see into a nest that is up in the top of a tree, or on a cliff face, etc.
- Variety of methods used to get above a nest to see inside

Video cameras

Continuous (daytime) monitoring Minimal disturbance at nest (aside from battery changes)

Clutch size

- Average number of eggs laid
 - Different on average between species
 - Variable within species
- Sensitive to body condition of the females
 - Years of low food abundance \rightarrow smaller clutch sizes
 - If females are having trouble forming eggs, it would show up here
- Timing is important
 - Most raptors lay one egg every 2-5 days
 - Nest predation can reduce the number of eggs \rightarrow under-estimate CS
 - Best CS estimates come from finding a nest early, and following it until the number of eggs maximizes
- Problem: repeated visits can be disturbing, may cause adults to abandon nests

Counting chicks

- At early stages, like counting eggs need to look into nests
- Ideally, combined with a clutch size measure, so that hatching success can be calculated
 - # chicks/# eggs
 - If there are problems with embryonic development, they would show up here
- Timing:
 - Asynchronous laying \rightarrow asynchronous hatching
 - For hatching success, as soon after hatching as possible waiting too long leads to brood reduction
 - To measure loss of chicks during the nestling phase, can re-visit the nest repeatedly

Nest failure, brood reduction

- Loss of chicks during the nestling period can occur due to starvation, nest predation, or brood reduction
 - Brood reduction is usually siblicide, doesn't usually cause nest failure
 - Nest predation can result in complete loss (nest failure) or reduction in number of offspring
- For top predators, starvation is more common than nest predation
- Distinguishing between nest predation and brood reduction requires intensive observation

Nest predation

Fledging

- Fledging = chicks leaving the nest
 - Consider a chick fledged when it's seen out of the nest
 - Can usually measure from the ground
- Can express as:
 - Fledging success = # fledged/# eggs laid
 - Average number of chicks fledged can be used to estimate recruitment
- Timing:
 - As close to the fledging event as possible, but can be on different days for each chick
 - Mortality of fledglings can be high don't want to confuse post-fledging mortality for low fledging success
- Problems:
 - After leaving the nest, chicks are harder to find can mistake a chick that is hidden/out of the area for a mortality
 - Some species (owls) leave the nest very early, before they can fly

Fledgling raptors

Reproduction in other egg-laying animals

- Some species that lay eggs provide no parental care
 - Count number of nests
 - Count clutch sizes
 - Hatching success = fledging success
- Some broadcast spawn
 - Sperm and egg both released into the water column
 - Fertilization happens externally, eggs develop and hatch in the plankton

Reproduction in live-bearing animals

- Mammals, some herps
- Can count pregnant females, couple with estimated number of offspring per female
- Can come from histology
 - Count of corpus luteum, corpus albicans → recent pregnancy, past pregnancy
 - Count of placental scars \rightarrow litter size
- Survey based:
 - Count of pups in dens
 - Count of offspring, females \rightarrow recruitment

Portable medical imaging

X-ray on desert tortoise

Ultrasound on deer

Reproduction in plants

- Plants have both vegetative and sexual reproduction
 - Sexual reproduction through seeds
 - Vegetative reproduction through various structures (rhizomes, stolons)
- Both can be important for population regulation

Plant sexual reproduction

- Reproduction in plants is seed production, followed by germination
- Germination is enough for estimating population growth, can be easier to measure than seed production
- Germination rate from a single plant is complicated if there is a seed bank
 - Long-term storage of non-germinated seeds in the ground
 - May take more than one year to go from seed to germinated seedling

Plant asexual reproduction

- Any reproduction that doesn't involve sex between different individuals
- Rhizomes, stolons, vegetative reproduction, fragments

Example – Geum reptans

- · Long-lived alpine plant, found in the Alps
- Uses both sexual and asexual reproduction
- Weppler et al. 2006 estimated both modes of reproduction

Sexual reproduction

Two censuses

- First: every individual mapped, number of flower heads counted for each
- Second: seedlings counted
- Seeds/head estimated from a sample of 10 in each life history stage once during the 3-year study
- Total seed production was seed heads x average seeds per head
- Per capita sexual reproduction was [(seed produced)/(total adults)] x germination rate

Asexual reproduction

- First census: number of stolons
- Second census: daughter rosettes at the ends of stolons counted

Age-specific per-capita clonal reproduction was:

Number of rosettes established

Number of stolons produced per individual

Both reproductive modes equally important to population growth rate

- Reproductive rates were used along with survival measures to calculate population growth rates
- Using sensitivity analysis, they found that survival of adults was most important
- But, there was no difference in sensitivity of growth rate to sexual vs. asexual reproduction