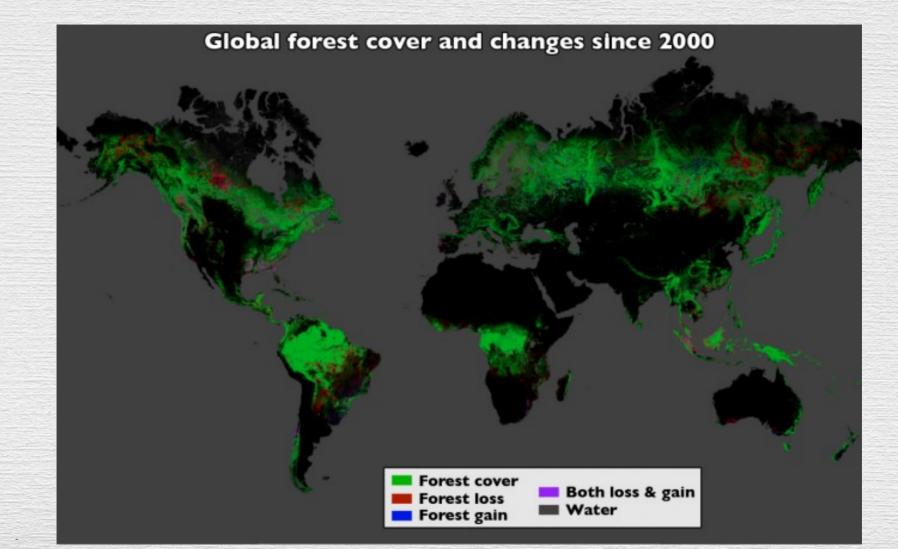


Ecological Monitoring

We're changing the world

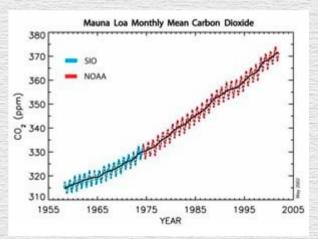
- Human population is growing
- Our lifestyles are increasingly consumptive
- Land must be converted for human use
 - Agriculture
 - Development
- Energy use is high
- All of this is drastically changing the world, in ways that are threats to ourselves and other species


Development, urbanization

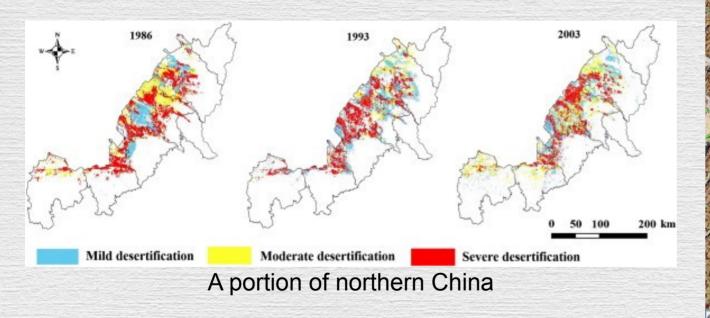
http://landcover.usgs.gov/urban/umap/movies/sf_bay450.mpeg

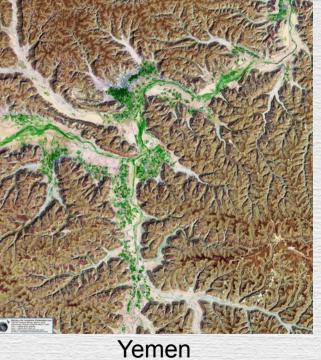
http://www.youtube.com/watch?v=9_9SutNmfF

http://earthenginepartners.appspot.com/science-2013-global-forest

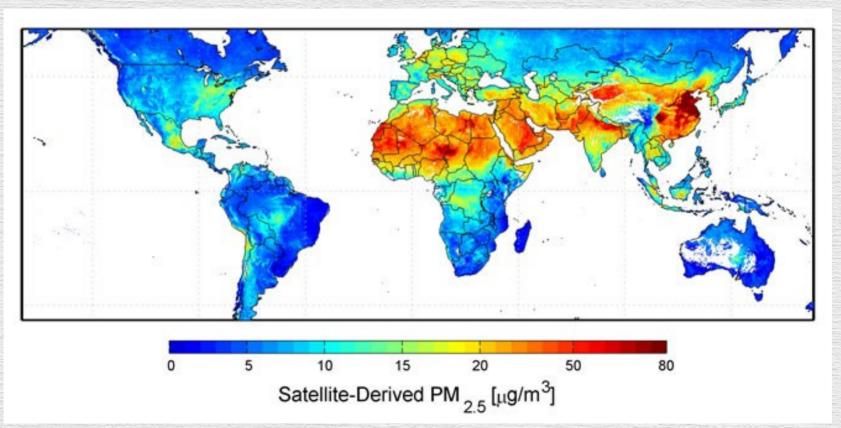

Climate change

http://earthobservatory.nasa.gov/Features/WorldOfChange/decadaltemp.php


http://www.youtube.com/watch?feature=player_embedded&v=l8tPKj20GFo#at=1



Muana Loa Observatory



Desertification

Atmospheric pollution

Satellite-based estimates of particulate matter from 2001-2006

The biodiversity crisis

- Species become threatened, endangered, or extinct due to:
 - Anthropogenic development \rightarrow habitat destruction
 - Invasive exotic species \rightarrow native species displaced
 - Direct consumption \rightarrow over-harvesting
 - Pollution \rightarrow habitat degradation
- Combined, these impacts are leading to loss of species, which reduces biodiversity
- The current rate of species loss is more similar to mass extinctions (e.g. dinosaurs) rather than to normal "background" species loss (~1 sp./yr out of the estimated 5-30 million worldwide)

Monitoring change


- Recording conditions, and detecting change over time
- Allows us to intelligently address:
 - Sustainable resource management
 - Climate change
 - T&E species conservation
- Status and trend
 - Status = current conditions
 - Trend = change over time

Personal perception of change isn't enough

- We need to be data driven
 - Cumulative effects = impacts that accumulate over time
 - We're poor at detecting changes over large spatial scales, long time scales
- Our personal perceptions of the problems are biased by personal experience
- E.g. the "shifting baselines problem"

Shifting baselines

- Human lifespans are usually less than 100 yrs
- Changes have been occurring longer than the average human lifespan
- To us, changes over decades seem slow, but are extremely rapid in evolutionary/ecological sense
- Conditions as they are when we become aware of them are our "baseline", treat them as normal
- Unaware of the changes that have already occurred, we don't realize what has already been lost
- · We need to monitor to know better

Monitoring natural resources and services we depend on

- · Need to ensure that our use is sustainable
- Ecosystem services
 - Clean air, water
 - Fertile soils
 - Pollination of crops
- Resources
 - Wood products
 - Food (fish)
 - Genetic resources

Monitoring changes that occur without direct interaction with people

- Changes happen even within parks and reserves
 - Invasive exotic species enter from the outside
 - Changes in water flow into the park
 - Pollution
 - Fire
 - Climate change
- Intervention to prevent damage is more likely to work the earlier we intervene
- · Monitoring allows us to detect problems before they get out of hand

Monitoring for changes

- To detect change in a population, community, or ecosystem over time, we need to:
 - Define the system to be monitored
 - Decide what property(ies) to record and/or quantify
 - Decide where and when to sample
 - Collect the data
 - Compare the measurements between time points to determine if there are changes

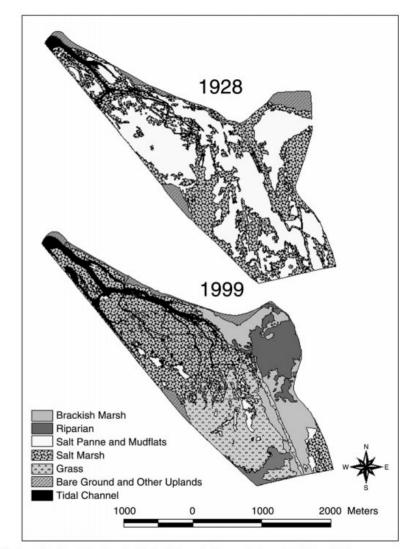
Qualitative properties

- Qualitative = a property of a system that isn't represented as a numeric quantity
 - Vegetation type
 - Species composition
- Can monitor for these kinds of changes as a change in state
 - A single location that changes vegetation type
 - Loss of (native) species, gain of (exotic) species

Quantitative changes

- Quantitative = a property that can be represented as a numeric quantity
 - Area of cover, primary production of a vegetation type in a region
 - Abundance of a species
 - Species composition of an ecological community
- Quantitative changes can be assessed using statistical tools for detecting trends (e.g. regression, time series analysis)
- The quantities measured should clearly be reliable indicators of the health, stability and proper functioning of the system

Our focus: land cover change, population monitoring

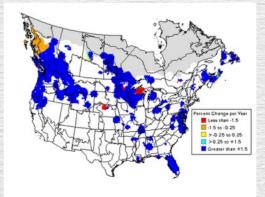

- Land cover change is a reliable indicator of changes in populations, communities, and ecosystems
- For particular species of interest, we can also monitor populations
 - Abundance, density
 - Population growth rate

Land cover change

- Land cover = the physical material at the surface of the earth
- Many types of land cover can be observed from the air, or from space
- Land cover types can be defined to correspond to habitat types
- Change in land cover is then a useful proxy for change in habitat
 - Change from vegetation \rightarrow development is habitat loss
 - Change from grasslands \rightarrow forest is habitat change
- Over large spatial scales, this kind of monitoring is usually done with remote sensing and GIS

Example: Los Peñasquitos Creek

- Change in hydrology → change in cover type
- Changes in habitats → changes in species composition, ecosystem function



Monitoring populations

- For single species (e.g. a T&E species), focus on more detailed, field-based data collection
- Abundance and/or density the number of individuals, or number per unit area
 - Single assessment status
 - Changes in abundance or density over time trend (population growth rate)
- Demographic monitoring = using birth and death rates to calculate population growth rate

Monitoring abundance

- Breeding Bird Survey (BBS)
- Routes observed each year at the same time
- Changes over time indicate changes in abundance

Bald Eagle recovery

Demographic monitoring

- Calculating population growth rate from ageand sex-specific birth and death rates
- Very informative, but very labor intensive

The game plan:

- First 6 weeks cover type change
 - Remote sensing and GIS
- Weeks 6-11 population abundance and density status and trend
- Weeks 11-13 demographic monitoring
- Week 14 biodiversity monitoring