## The stats you need to know

### Review of basic statistical concepts

# We'll touch on the basics

- Parameters and estimates
  - Confidence intervals for estimates
- Hypothesis testing about relationships between variables
  - Two numeric variables  $\rightarrow$  regression
  - One numeric variable and one categorical  $\rightarrow$  ANOVA

# So you want to know the density of poppies in this field...



Density = (number of poppies)/(area)

If we could count every flower, and measure the area of the field, we could calculate the true density But, we can't – we have to **estimate** the density from a **sample** instead

# Problem with a sample – individual plots are variable



Each square is a 1 m<sup>2</sup> plot – number of poppies varies a lot among the plots

How do we get an estimate of the density of poppies per square meter from these?

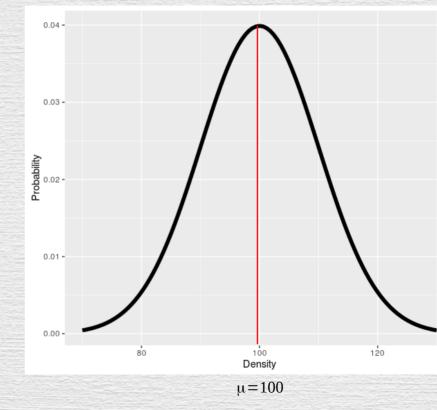
### Solution: treat poppy density as a random variable

- Random variables are mathematical abstractions models of variables subject to random variation
  - Random variables take different values → two repeated observations may give different results
  - Can't know the value of a random variable in advance of observing it
- We can use a mathematical model of the random variable to understand it better
  - Can make probability statements about what the random variable's value will be when it's observed
  - Example: the normal distribution as a model of poppy density

### Distribution of densities of poppies in 1m<sup>2</sup> plots

Individual plots have different numbers

If we measured every square meter, the mean would be the true mean density, which we call the population parameter:  $\mu = 100$ 



# But, we don't have complete information

- Usually, we don't know µ, and all the information we have about it comes from a sample of data
- If we have a sample of 9 plots, with counts of: 95, 68, 107, 93, 101, 113, 107, 100, 106 the mean of this sample (x) is 98.89
- We we can treat this sample mean (x) as an estimate of the population parameter (μ)
- The amount of variation among the data values is measured with the standard deviation (s), which is 13.18
- How good an estimate of  $\mu$  is  $\overline{x}$ ?

# Sampling variation

- The *individual* variation among 1 m<sup>2</sup> plots causes sample *estimates* to vary as well
  - Two different sets of 9 plots would have a different set of counts of poppies
  - The counts would therefore have a different mean
- To know how good a single estimate like ours is, we need to understand how estimates tend to vary due to random sampling

https://www.zoology.ubc.ca/~whitlock/Kingfisher/SamplingNormal.htm

# Distribution of individual plots

0.04 -

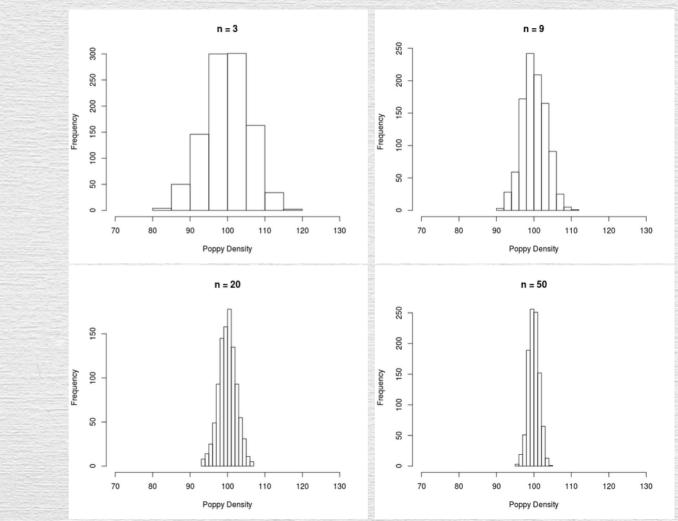
0.03 -

papil 0.02

0.01 -

0.00

#### *Distribution of sample means = sampling distribution*



n = sample size, number of plots counted to obtain the estimated mean

100

Density

120

# Some generalizations...

- Estimates of means are less variable than individual data values
  - A mean is a measure of central tendency, which is the location of the middle of the sample of data
  - Across multiple samples, middles are less variable than individual data values
- Bigger sample sizes lead to less sampling variation
  - Any single estimate is less likely to be far away from the parameter
  - Estimates from repeated samples will thus be closer together
  - More repeatability = better precision

# We can estimate variability among **means** from a single sample of data

- A single sample only gives us a single mean
- We want to know how variable many different means sampled from the same population would be
- $s_{\bar{x}}$  = the standard error, measures variability among sample means:

$$s_{\overline{x}} = \frac{s}{\sqrt{n}}$$

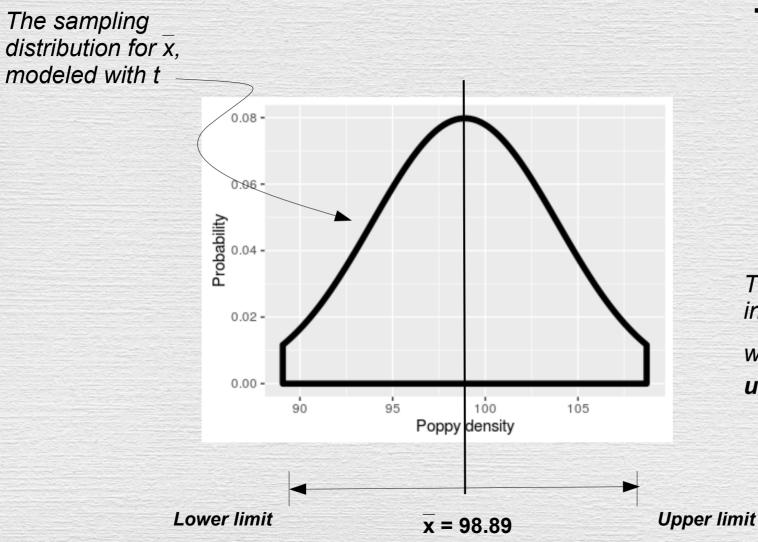
- The smaller  $s_{\bar{x}}$  is a measure of precision – small  $s_{\bar{x}}$  means good precision

## Standard error from our nine plots:

- The data:
  - 95, 68, 107, 93, 101, 113, 107, 100, 106
- The average of this sample  $(\overline{x})$  is 98.89
- The standard deviation (s) is 13.18
- The sample size (n) is 9
- So,  $s_{\bar{x}}$  is 13.18/sqrt(9) = 4.39

# **Confidence intervals**

- Because of random sampling variation, we know:
  - Our estimate of 98.89 poppies/m<sup>2</sup> is probably different from the actual density (µ) by some amount
  - Another sample of 9 will give us a different mean
- We can't know  $\mu$  for sure, but we can use what we know about random sampling to come up with a range of poppy densities that are good possible values for  $\mu$
- We call this range of possible values a confidence interval

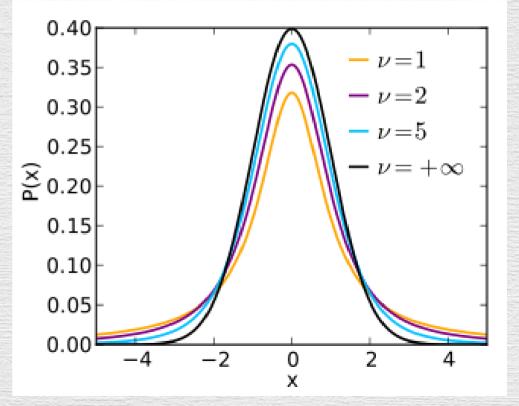


The basic idea...

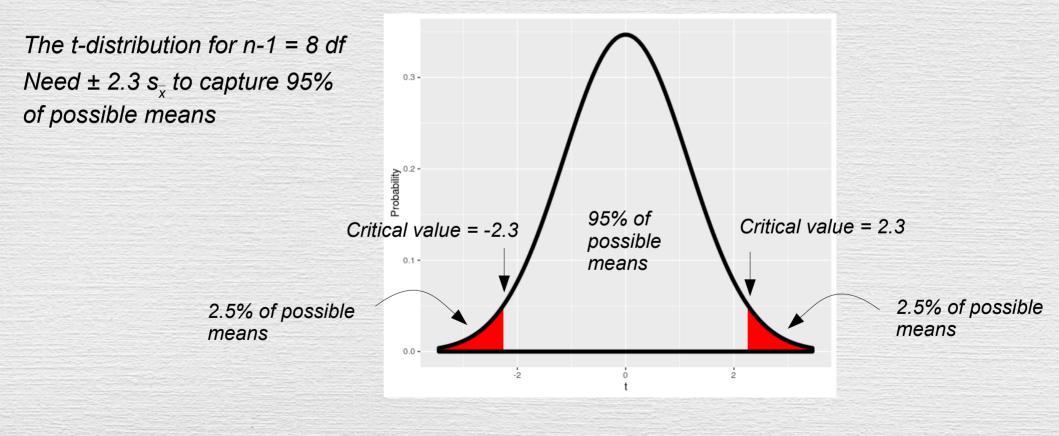
The confidence interval:  $\overline{x} \pm ts_{\overline{x}}$ where  $ts_{\overline{x}}$  is called the **uncertainty** 

# The t-distribution

- Similar in shape to the normal, but a better model of random sampling
- The shape depends on degrees of freedom (related to sample size)
- The x-axis is in standard error units

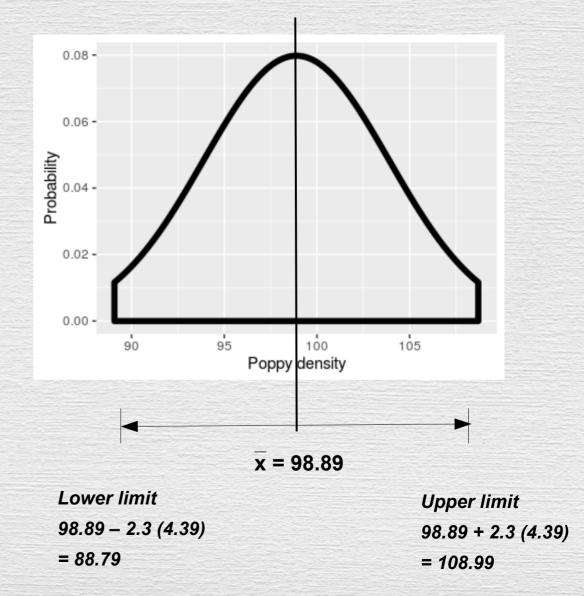


# t is used to determine how many $s_{\overline{x}}$ around $\overline{x}$ are needed to include 95% of possible means



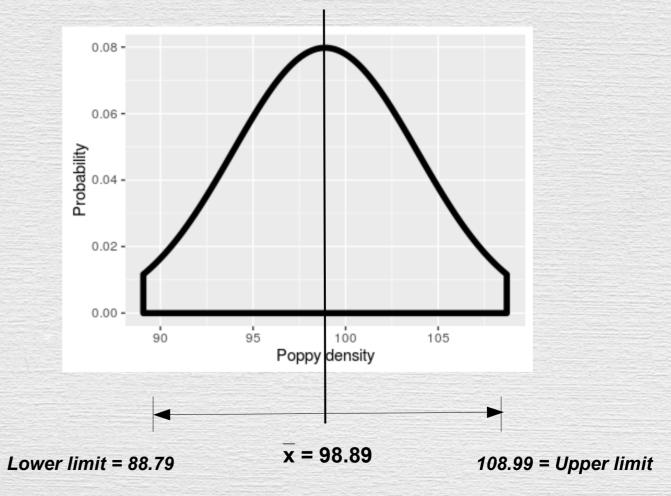
# Calculations

- An interval is defined by upper and lower limits
- 95% confidence intervals are defined by the upper limit of  $\overline{x} + ts_{\overline{x}}$ , and the lower limit of  $\overline{x} - ts_{\overline{x}}$



## Interpretation

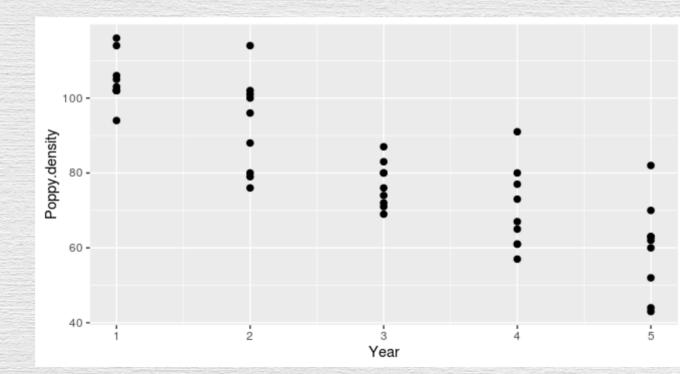
The estimated poppy density is 98.89 m<sup>-2</sup>, with 95% confidence that the density is between 88.79 and 108.99



# **Estimation:** summary

- We work with samples, but want to generalize about populations
- This is done by estimating population parameters with sample data
- We use the standard error as a raw measure of sampling precision (consistency, repeatability)
- We use the confidence interval to tell us the range of values that are likely to be obtained if we sampled again
  - Since the true population mean is one of the possible sample means, the confidence interval has a 95% chance of including the population mean

# So you want to know if poppy density is declining over time...



Nine different plots sampled each year

# What do we want to know?

- Is there a change in number over time?
  - If so, is it a decline or an increase?
- Find the line with equation:

Poppy density = m (Year) + b

that fits the data best

- m = slope = (change in density)/(change in years)
  - · Annual rate of change in density
  - If m is negative, then density is (increasing or decreasing?)
- b = intercept = density at year 0 (i.e. value of y when x = 0)
  - Usually not interpreted a fitted constant needed for the line to hit the y-axis at the right place so that the line goes through the data
- How do we know what line fits best?

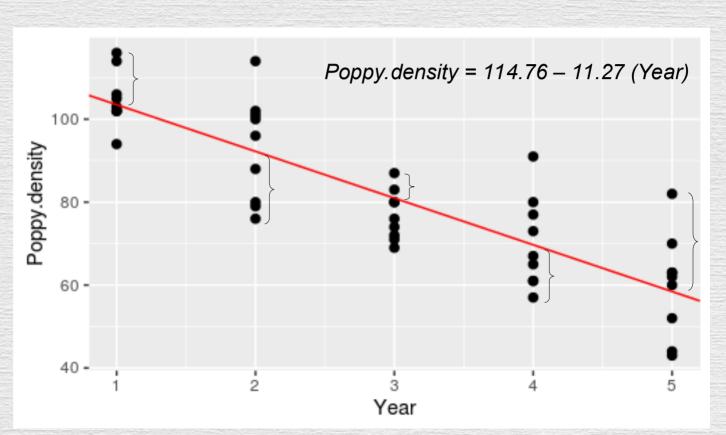
The least squares criterion = the best fit line minimizes the squared residuals

Residuals: data values – predicted values

The slope of -11.27 means that density is decreasing by 11.27 poppies/m<sup>2</sup> each year

LS line is as close as possible to all of the data at once

## The least squares line

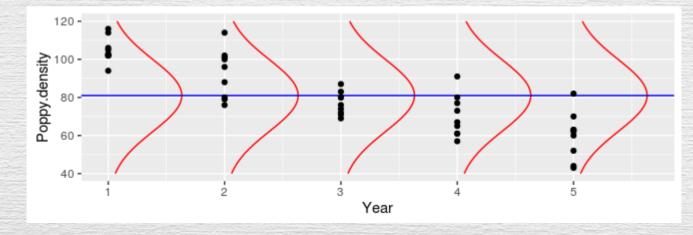


Can we be sure our negative slope represents an actual decline?

- Q: How do we know this apparent decline isn't just the result of chance?
- A: We can't be completely certain
  - Randomly generated data can appear to show patterns
- But, we can ask "What is the probability of observing a slope of this size in a sample of data if there actually isn't a decline in the population?"
- This is a statistical hypothesis, and we evaluate it with a statistical null hypothesis test

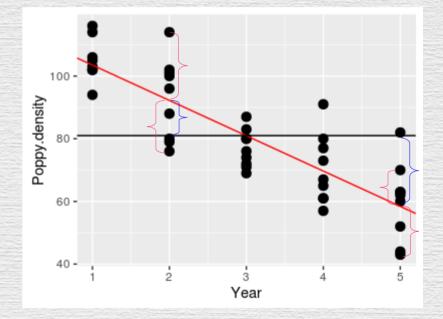
### Testing a null hypothesis about the effect of year on poppy density

- Null hypothesis = no effect, no difference, randomness
- No relationship between poppy density and year is a flat line → slope = 0
- Use the probability of getting a line with a slope of -11.267 by sampling a population with a slope of 0 in a test of the null

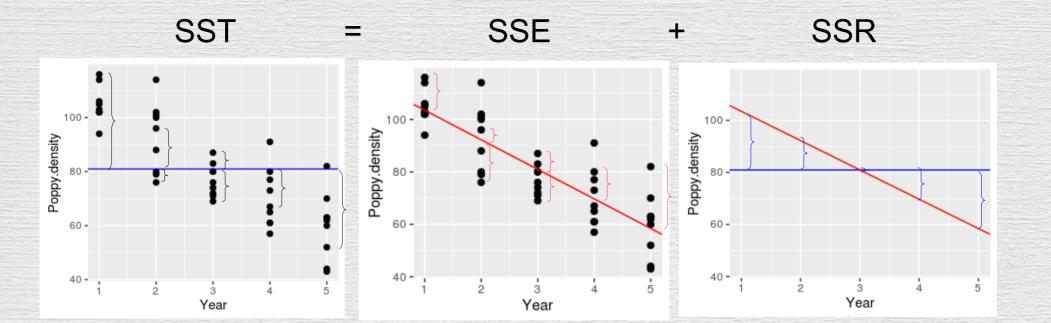


# Partitioning the variance

- Think of each data point as being due to the sum of two things:
  - The average poppy density in a given year (blue brackets)
  - Random individual variation around the annual average (red brackets)
- Variation around the horizontal line = total variation
- Divide this into two components:
  - Explained variation = the regression line
  - Unexplained variation = the residuals



• If the variation explained by the line is large compared to the random variation, then we have reason to think there is a real decline



#### **Total SS**

Sum of squared differences between Y data and mean of Y data

### **Residual SS**

Sum of squared residuals around the line

Random, unexplained variation

### **Regression SS**

Sum of squared differences between mean of Y and predicted value

Explained variation

# Convert SS to variances

- We want to know how explained variation compares with unexplained variation, but SS are totals
  - Each individual data point contributes to the error SS
  - The line is defined by two paraters, which is the basis for the model SS
- Need to convert raw SS into values that can be compared
- Variance is an average amount of variation per degrees of freedom:
- We can convert each of our SS to variances if we divide them by an appropriate degrees of freedom

$$s^2 = \sum \frac{x_i - \overline{x}}{n - 1} = \frac{SS}{df}$$

 If the null is true, then both of these variances are actually estimating random variation → should be about the same size

# SS and df for each component

- Total degrees of freedom = n – 1 = 44
- Model degrees of freedom is 1 (slope estimate consumes 1 degrees of freedom)
- Residual degrees of freedom is total – model = 44 - 1 = 43
- Each component's MS is calculated as its SS/df

$$MS_{total} = SS_{total}/df_{total}$$

$$MS_{model} = SS_{model}/df_{model}$$
$$MS_{residual} = SS_{residual}/df_{residual}$$

# Using MS to calculate the F test statistic

We need a **test statistic** that measures what is observed in the data *F* is a ratio of two variances (any two variances) For a regression, we calculate *F* as:  $F = MS_{mode}/MS_{residual}$ 

If the null hypothesis is true, both MS estimate random variation, and the ratio should be 1

If the null hypothesis is false, model MS will be bigger than residual MS, and F will be bigger than 1

## Assemble into an ANOVA table

#### Response: Poppy.density

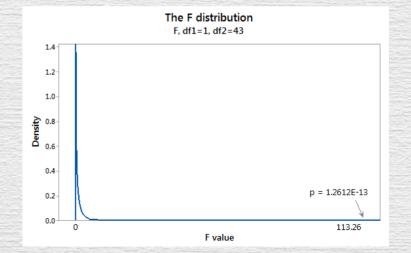
DfSum Sq Mean Sq F valuePr(>F)Year111424.4113.261.262e-13Residuals434337.5100.9

Sampling distribution for F is the F distribution Shape is determined by both numerator (1) and denominator (43) degrees of freedom

The probability of an F of 113.26 or greater if the null is true is area under curve from 113.26 to  $\infty$ 

 $p = 1.262 \times 10^{-13} - very small$ 

Reject the null hypothesis, conclude that the slope is not 0 – the regression is statistically significant



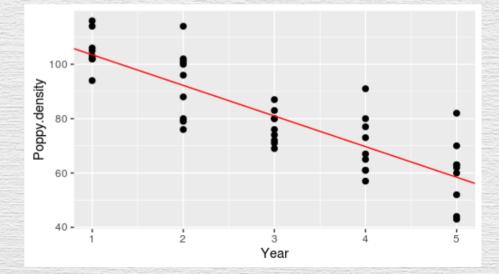
# Strength of the relationship - r<sup>2</sup>

Response: Poppy.density

DfSum Sq Mean Sq F valuePr(>F)Year111424.4113.261.262e-13Residuals434337.5100.9

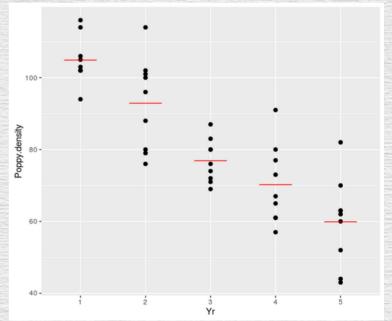
 $r^2$  = coefficient of determination Measures the proportion of total variation explained by the line

$$r^{2} = \frac{SS_{\text{regression}}}{SS_{\text{total}}} = \frac{11424.4}{11424.4 + 4337.5} = 0.72$$



# We could instead treat year as a category

- We could treat these as grouped data, with year representing the groups
- We would then ask if the means are different from one another
- The null hypothesis would be that all the group means are the same

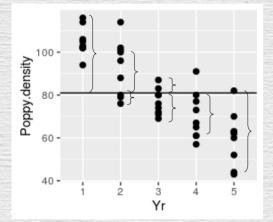


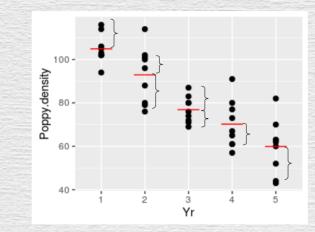
SST

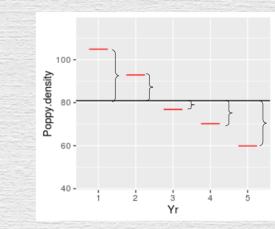
SSE

SSF

+







Total SS Sum of squared residuals, using the mean of the Y data

### Error SS

Sum of squared residuals, using the group means

Random, unexplained variation Factor SS Sum of squared differences between mean of Y and group means *Explained variation* 

# The ANOVA table

Response: Poppy.density

 Df
 Sum Sq
 Mean Sq
 F value
 Pr(>F)

 Yr
 4
 11616.8
 2904.20
 28.025
 3.941e-11

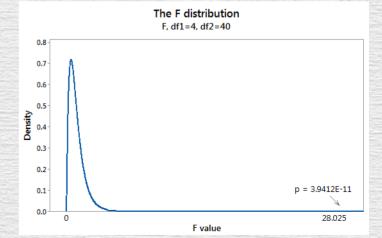
 Residuals
 40
 4145.1
 103.63
 5.025
 5.025

#### DF:

Predictor (Yr) gets number of groups -1 = 4Total is sample size -1 = 44

Residual is  $DF_{total} - DF_{vr} = 44 - 4 = 40$ 

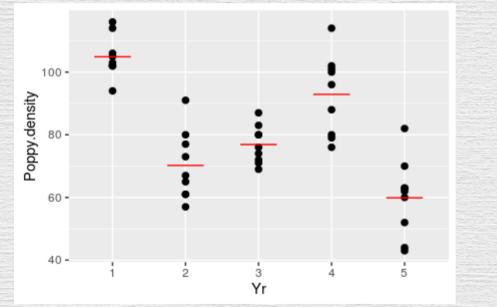
The p-value tells us that the probability of this amount of difference between means if all years are the same is  $1.262 \times 10^{-13}$ 

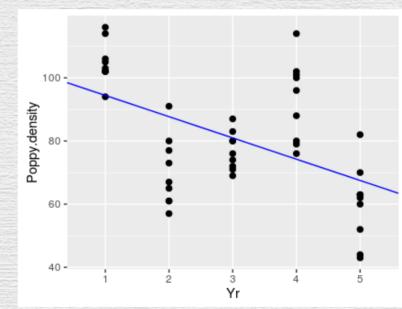


# Which to use?

- Clearly they are very similar
- The analysis is more powerful (i.e. more likely to detect a real change) with more residual DF
  - Regression has the advantage only 1 df for Year, which left 43 residual
  - ANOVA needed 4 for Yr, left only 40 residual
- But, regression is only a better choice if the decline is linear





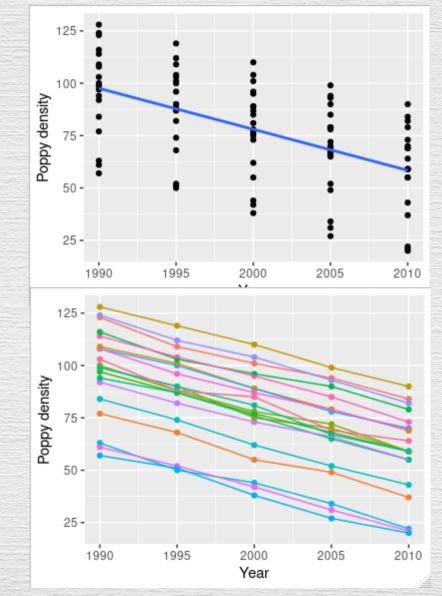


# **Regression and ANOVA summary**

- We use regression and ANOVA to analyze how a predictor affects a numeric response (poppy density)
  - In regression the predictor is also numeric (year treated as a number)
  - In ANOVA, the predictor is a category (year treated as a grouping variable)
- We test a null hypothesis about the chances of our results occurring at random
- Regression is a better choice than ANOVA, when the response is linear

# Repeated measures data

- It is often beneficial to record conditions at the same locations every year
- More sensitive to change, because the differences at individual points is the focus
- But, to get the benefit of the design must also analyze the data as paired data



## Simplified example: two time points

