
The stats you need to know

Review of basic statistical concepts



We’ll touch on the basics
● Parameters and estimates

– Confidence intervals for estimates

● Hypothesis testing about relationships between 
variables
– Two numeric variables → regression
– One numeric variable and one categorical → ANOVA



So you want to know the density of 
poppies in this field...

Density = (number of poppies)/(area)

If we could count every flower, and measure the area of the field, we could calculate the true density

But, we can’t – we have to estimate the density from a sample instead



Problem with a sample – individual plots 
are variable

Each square is a 1 m2 plot – number of poppies varies a lot among the plots

How do we get an estimate of the density of poppies per square meter from these?



Solution: treat poppy density as a random variable

● Random variables are mathematical abstractions – models of 
variables subject to random variation
– Random variables take different values → two repeated 

observations may give different results
– Can’t know the value of a random variable in advance of observing it

● We can use a mathematical model of the random variable to 
understand it better
– Can make probability statements about what the random variable’s 

value will be when it’s observed
– Example: the normal distribution as a model of poppy density



Distribution of densities of poppies in 1m2 plots

Individual plots have different 
numbers

If we measured every square meter, 
the mean would be the true mean 
density, which we call the 
population parameter: μ = 100

μ=100



But, we don’t have complete information
● Usually, we don’t know μ, and all the information we have about it 

comes from a sample of data
● If we have a sample of 9 plots, with counts of: 

95, 68, 107, 93, 101, 113, 107, 100, 106

the mean of this sample (x) is 98.89
● We we can treat this sample mean (x) as an estimate of the 

population parameter (μ)
● The amount of variation among the data values is measured with the 

standard deviation (s), which is 13.18
● How good an estimate of μ is x?



Sampling variation
● The individual variation among 1 m2 plots causes 

sample estimates to vary as well
– Two different sets of 9 plots would have a different set of 

counts of poppies
– The counts would therefore have a different mean

● To know how good a single estimate like ours is, we 
need to understand how estimates tend to vary due 
to random sampling

https://www.zoology.ubc.ca/~whitlock/Kingfisher/SamplingNormal.htm



Distribution of sample means = sampling distributionDistribution of 
individual plots

n = sample size, 
number of plots 
counted to obtain the 
estimated mean



Some generalizations...
● Estimates of means are less variable than individual data 

values
– A mean is a measure of central tendency, which is the location of 

the middle of the sample of data
– Across multiple samples, middles are less variable than individual 

data values

● Bigger sample sizes lead to less sampling variation
– Any single estimate is less likely to be far away from the parameter
– Estimates from repeated samples will thus be closer together
– More repeatability = better precision



We can estimate variability among means from a 
single sample of data

● A single sample only gives us a single mean
● We want to know how variable many different means sampled 

from the same population would be
● sx = the standard error, measures variability among sample 

means:

● The smaller sx is a measure of precision – small sx means good 
precision

s x̄=
s

√n



Standard error from our nine plots:
● The data:

95, 68, 107, 93, 101, 113, 107, 100, 106
● The average of this sample (x) is 98.89
● The standard deviation (s) is 13.18
● The sample size (n) is 9
● So, sx is 13.18/sqrt(9) = 4.39



Confidence intervals
● Because of random sampling variation, we know:

– Our estimate of 98.89 poppies/m2 is probably different from 
the actual density (μ) by some amount

– Another sample of 9 will give us a different mean

● We can’t know μ for sure, but we can use what we know 
about random sampling to come up with a range of 
poppy densities that are good possible values for μ

● We call this range of possible values a confidence 
interval



The basic 
idea...

x = 98.89

The sampling 
distribution for x, 
modeled with t

The confidence 
interval:   x ± ts

x
 

where ts
x
 is called the 

uncertainty

Lower limit Upper limit



The t-distribution
● Similar in shape to the 

normal, but a better 
model of random 
sampling

● The shape depends on 
degrees of freedom 
(related to sample size)

● The x-axis is in standard 
error units



t is used to determine how many s
x
 around x are needed to 

include 95% of possible means

The t-distribution for n-1 = 8 df

Need ± 2.3 s
x
 to capture 95% 

of possible means

Critical value = 2.3Critical value = -2.3
95% of 
possible 
means

2.5% of possible 
means

2.5% of possible 
means



Calculations
● An interval is defined 

by upper and lower 
limits

● 95% confidence 
intervals are defined 
by the upper limit of 
x + tsx, and the lower 
limit of
x - tsx

x = 98.89

Lower limit

98.89 – 2.3 (4.39)

= 88.79

Upper limit

98.89 + 2.3 (4.39)

= 108.99



Interpretation

x = 98.89Lower limit = 88.79 108.99 = Upper limit

The estimated 
poppy density is 
98.89 m-2, with 95% 
confidence that the 
density is between 
88.79 and 108.99



Estimation: summary
● We work with samples, but want to generalize about populations
● This is done by estimating population parameters with sample 

data
● We use the standard error as a raw measure of sampling 

precision (consistency, repeatability)
● We use the confidence interval to tell us the range of values that 

are likely to be obtained if we sampled again
– Since the true population mean is one of the possible sample means, 

the confidence interval has a 95% chance of including the population 
mean



So you want to know if poppy density is 
declining over time...

Nine different plots sampled each year



What do we want to know?
● Is there a change in number over time?

– If so, is it a decline or an increase?

● Find the line with equation:

Poppy density = m (Year) + b

that fits the data best
– m = slope = (change in density)/(change in years)

● Annual rate of change in density
● If m is negative, then density is (increasing or decreasing?)

– b = intercept = density at year 0 (i.e. value of y when x = 0)
● Usually not interpreted – a fitted constant needed for the line to hit the y-axis at the right place 

so that the line goes through the data

● How do we know what line fits best?



The least squares 
criterion = the best fit 
line minimizes the 
squared residuals

Residuals: data 
values – predicted 
values

The slope of -11.27 
means that density is 
decreasing by 11.27 
poppies/m2 each year

LS line is as close as 
possible to all of the 
data at once

The least squares line

Poppy.density = 114.76 – 11.27 (Year)



Can we be sure our negative slope 
represents an actual decline?

● Q: How do we know this apparent decline isn’t just the 
result of chance? 

● A: We can’t be completely certain
– Randomly generated data can appear to show patterns

● But, we can ask “What is the probability of observing a 
slope of this size in a sample of data if there actually isn’t a 
decline in the population?”

● This is a statistical hypothesis, and we evaluate it with a 
statistical null hypothesis test



Testing a null hypothesis about the effect of year 
on poppy density

● Null hypothesis = no effect, no difference, randomness
● No relationship between poppy density and year is a 

flat line → slope = 0
● Use the probability of getting a line with a slope of -11.267 by 

sampling a population with a slope of 0 in a test of the null



Partitioning the variance
● Think of each data point as being due to the sum of two things:

– The average poppy density in a 
given year (blue brackets)

– Random individual variation around the 
annual average (red brackets)

● Variation around the 
horizontal line = total variation

● Divide this into two components:
– Explained variation = the regression line
– Unexplained variation = the residuals

● If the variation explained by the line is large compared to the random 
variation, then we have reason to think there is a real decline



Total SS

Sum of squared 
differences between Y 
data and mean of Y data

Residual SS

Sum of squared 
residuals around the 
line

Random, unexplained 
variation

Regression SS

Sum of squared 
differences between 
mean of Y and predicted 
value

Explained variation

SST            =              SSE             +              SSR



Convert SS to variances
● We want to know how explained variation compares with unexplained 

variation, but SS are totals
– Each individual data point contributes to the error SS
– The line is defined by two paraters, which is the basis for the model SS

● Need to convert raw SS into values that can be compared
● Variance is an average amount of 

variation per degrees of freedom:
● We can convert each of our SS to 

variances if we divide them by an 
appropriate degrees of freedom

● If the null is true, then both of these variances are actually estimating random 
variation → should be about the same size

s2=∑
xi− x̄

n−1
=
SS
df



SS and df for each component
● Total degrees of freedom = 

n – 1 = 44
● Model degrees of freedom is 

1 (slope estimate consumes 
1 degrees of freedom)

● Residual degrees of freedom 
is total – model = 44 - 1 = 43

● Each component’s MS is 
calculated as its SS/df

MS
total

 = SS
total

/df
total

MS
model

 = SS
model

/df
model

MS
residual

 = SS
residual

/df
residual



Using MS to calculate the F test statistic

We need a test statistic that measures what is observed in the data

F is a ratio of two variances (any two variances)

For a regression, we calculate F as:

F = MS
model

/MS
residual

If the null hypothesis is true, both MS estimate random variation, and the 
ratio should be 1

If the null hypothesis is false, model MS will be bigger than residual MS, 
and F will be bigger than 1



Assemble into an ANOVA table
Response: Poppy.density

          Df  Sum Sq Mean Sq F value    Pr(>F)    

Year       1 11424.4 11424.4  113.26 1.262e-13

Residuals 43  4337.5   100.9                      

Sampling distribution for F is the F distribution

Shape is determined by both numerator (1) and 
denominator (43) degrees of freedom

The probability of an F of 113.26 or greater if the null is 
true is area under curve from 113.26 to ∞

p = 1.262 x 10-13 – very small

Reject the null hypothesis, conclude that the slope is 
not 0 – the regression is statistically significant



Strength of the relationship - r2

r2 = coefficient of determination

Measures the proportion of total 
variation explained by the line

r2=
SS regression
SS total

=
11424.4

11424.4+4337.5
=0.72

Response: Poppy.density

          Df  Sum Sq Mean Sq F value    Pr(>F)    

Year       1 11424.4 11424.4  113.26 1.262e-13

Residuals 43  4337.5   100.9                      



We could instead treat year as a 
category

● We could treat these as grouped data, with year 
representing the groups

● We would then ask if the 
means are different from 
one another

● The null hypothesis would 
be that all the group means 
are the same



Total SS

Sum of squared 
residuals, using 
the mean of the Y 
data

Error SS

Sum of squared 
residuals, using the 
group means

Random, 
unexplained 
variation

Factor SS

Sum of squared 
differences 
between mean of Y 
and group means

Explained variation

SST            =              SSE             +              SSF



The ANOVA table
Response: Poppy.density

          Df  Sum Sq Mean Sq F value    Pr(>F)    

Yr         4 11616.8 2904.20  28.025 3.941e-11

Residuals 40  4145.1  103.63

DF:

Predictor (Yr) gets number of groups – 1 = 4

Total is sample size – 1 = 44

Residual is DF
total

 – DF
yr
 = 44 – 4 = 40

The p-value tells us that the probability of 
this amount of difference between means if 
all years are the same is 1.262 x 10-13



Which to use?
● Clearly they are very similar
● The analysis is more powerful (i.e. more likely to 

detect a real change) with more residual DF
– Regression has the advantage – only 1 df for Year, which 

left 43 residual
– ANOVA needed 4 for Yr, left only 40 residual

● But, regression is only a better choice if the decline 
is linear



What about these data?



Regression and ANOVA summary
● We use regression and ANOVA to analyze how a predictor 

affects a numeric response (poppy density)
– In regression the predictor is also numeric (year treated as a 

number)
– In ANOVA, the predictor is a category (year treated as a grouping 

variable)

● We test a null hypothesis about the chances of our results 
occurring at random

● Regression is a better choice than ANOVA, when the 
response is linear



Repeated measures 
data

● It is often beneficial to record 
conditions at the same 
locations every year

● More sensitive to change, 
because the differences at 
individual points is the focus

● But, to get the benefit of the 
design must also analyze the 
data as paired data



Simplified example: two time points

If the pairing isn’t 
accounted for, 
difference between 
means isn’t 
statistically 
significant (p = 0.12)

Using differences between 
measures of same points at 
two times gives very consistent 
changes – signficantly different 
from 0 (p = 6.3x10-14)
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