Principles of model selection

Linear models as tests of treatment effects

- We often think of statistical analysis as tests of a treatment effect
 - If the treatment has no effect at all the null hypothesis would be true (Ho: µ_{Treatment} = µ_{Control})
 - Testing the null hypothesis is a test of the treatment effect
- Good way to think about statistical analysis for simple experiments:
 - Variable Treatment, levels Treatment and Control
 - Single measured response
 - All nuisance variables held constant
 - Random assignment of subjects to treatment levels

Best case: complete, balanced designs

- Experiment to find the conditions under which potatoes rot the slowest
- Response variable is a measure of rot
- Factors tested that could affect rotting speed were:
 - BAC = bacterial inoculation (3 levels)
 - TEMP = temperture (2 levels)
 - OXYGEN = oxygen levels (3 levels)
- Question is: which combination of factors give the lowest amount of rot?

Response: ROT

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
BAC	2	651.81	325.91	13.9123	3.339e-05	* * *
TEMP	1	848.07	848.07	36.2024	6.599e-07	* * *
OXYGEN	2	97.81	48.91	2.0877	0.13872	
BAC: TEMP	2	152.93	76.46	3.2640	0.04981	*
BAC: OXYGEN	4	30.07	7.52	0.3209	0.86207	
TEMP: OXYGEN	2	1.59	0.80	0.0340	0.96661	
BAC: TEMP: OXYGEN	4	81.41	20.35	0.8688	0.49206	
Residuals	36	843.33	23.43			

It's easy when design is orthogonal

Include all the predictors initially

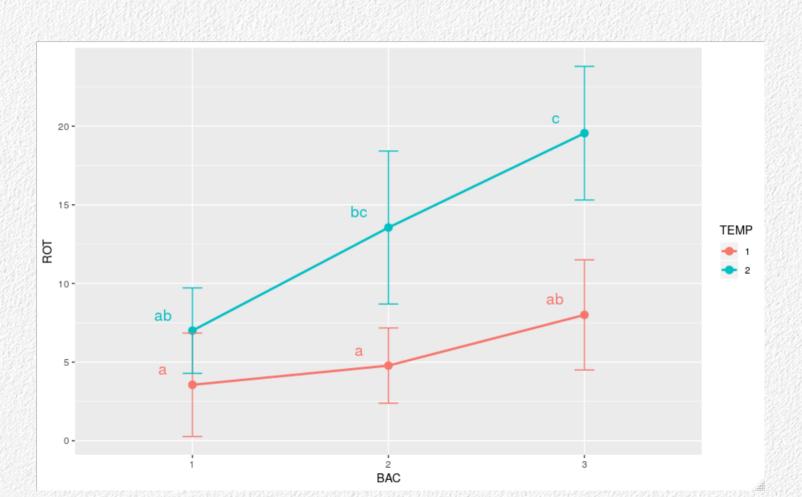
Response: ROT

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
BAC	2	651.81	325.91	14.8390	9.608e-06
TEMP	1	848.07	848.07	38.6138	1.180e-07
BAC:TEMP	2	152.93	76.46	3.4815	0.03874
Residuals	48	1054.22	21.96		

Drop all non-significant terms

SS are the same, but p-values are smaller, why?

Interpreting the best model

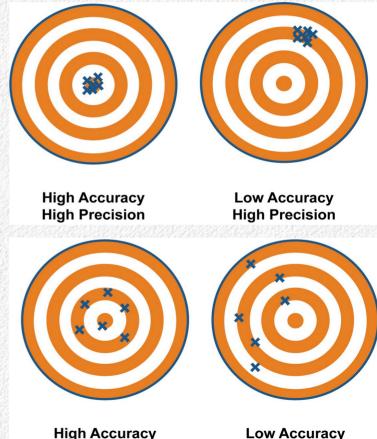


But, studies are often not so simple

- Complex experimental conditions
 - Nuisance variables (some of which can't be randomly assigned)
 - Covariates (some of which can't be blocked) \rightarrow lack of independence of predictors
 - Repeated measurements of the same individuals \rightarrow lack of independence of data values
- Complex responses to treatment variables
 - Possible interactions, nonlinearities
 - Multiple correlated predictors, confounding
- Best to approach analysis of complex studies as statistical modeling of the structure in the data
 - Once the best model is found, it can be interpreted

Model bias and variance

- Bias = an estimator does not equal the parameter it estimates over the long run
 - Opposite of accuracy
 - Bias assessed by whether the model puts predicted values in the middle of the data
- Variance = how far apart repeated estimates are from one another
 - Opposite of precision
 - Standard error of estimates represents variance

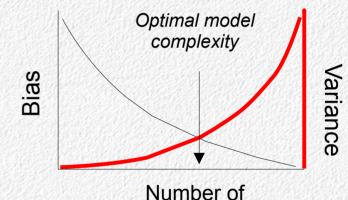


Low Precision

Low Precision

Problem: bias and variance trade off

- We can decrease bias by making a model more complex
 - Adding variables
 - Adding interactions
 - Adding quadratic, cubic, etc. terms
- Doing this increases variance because:
 - Predictors reduce error DF
 - If predictors are correlated standard errors increase
- Building statistical models balances bias and variance

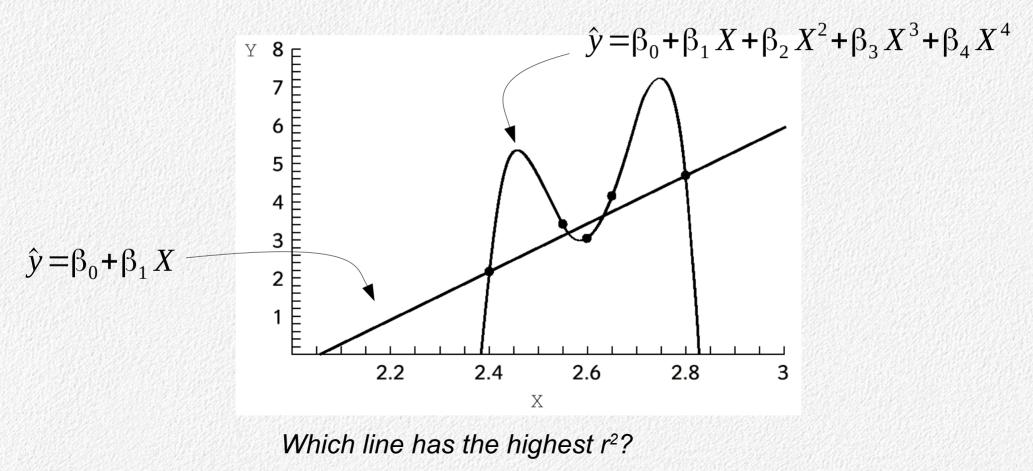


parameters

Problem: complex models don't generalize well

- Seems that we should want to explain as much variation in the response as possible
 - 100% explained variation is the goal
 - More explained variation seems to indicate better understanding of the underlying causes of variation in the response
- But, need to prevent over fitting
 - Over-fitted model is tailored to the quirks of the data set on which it was developed \rightarrow high R^2
 - Incorrectly attributing some of the random variation to real, fixed effects
- An over-fitted model performs poorly when it's applied to a new data set \rightarrow doesn't generalize well

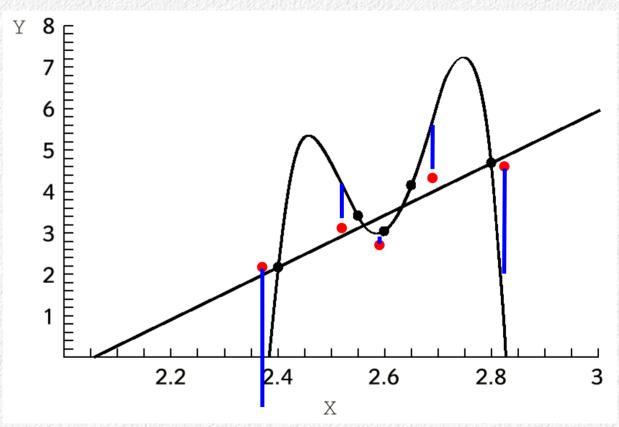
Example – which line is a better model for the data?



Which looks better now?

Small changes in position of data points ruin the polynomial R²

Nearly the same for the straight line

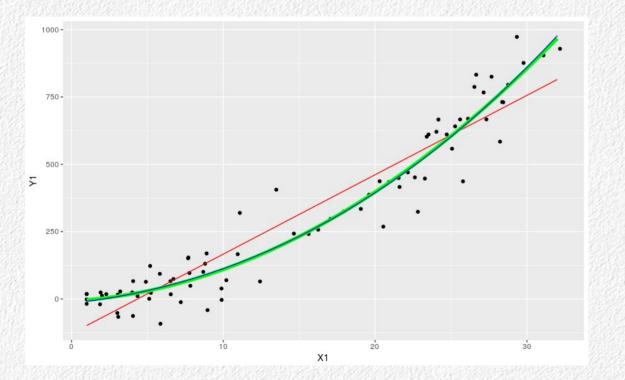


Even though the polynomial fits the original data better, the simple linear model generalizes better

What is the right amount of complexity?

- The number of models possible is often large, increases rapidly with number of predictors
 - With 3 predictors there are 7 models without interactions, 15 with interactions
 - With 6 predictors there are 63 models without interactions, more than 30,000 with interactions
- Q: What is the minimum acceptable model complexity?
- A: Whatever is needed to meet model assumptions

Minimally, must meet assumptions



First rule is that the model must meet GLM assumptions – as complex as needed to do this

For continuous predictors, consider adding polynomial terms, if there is evidence of nonlinearity

Can we meet GLM assumptions with a linear, quadratic, or cubic fit?

General Linear Model

Word equation: Y1 = X1

X1 is continuous

Analysis of variance table for Y, using Adjusted SS for tests

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
X1	1	6 663 021	6 663 021	6 663 021	722.89	0.000
Error	78	718 946	718 946	9 217		
Total	79	7 381 967				

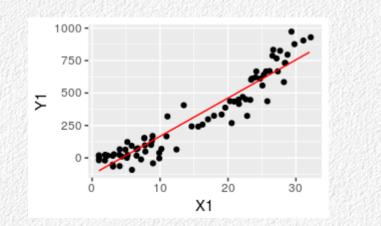
Coefficients table

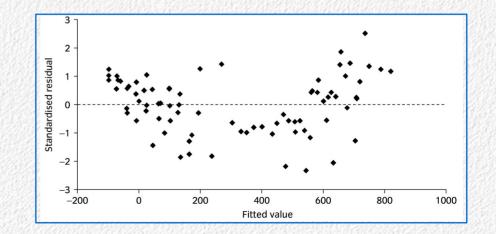
Term	Coef	SECoef	Т	Р
Constant	-128.08	19.40	-6.60	0.000
X1	29.473	1.096	26.89	0.000

Linear – poor fit

Not complicated enough!

Add a quadratic term to see if GLM assumptions are met





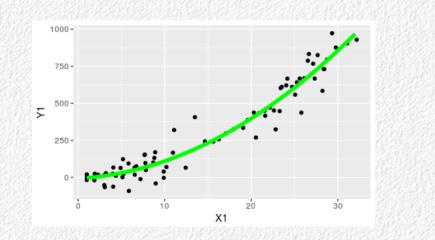
General Linear Model

Word equation: Y1 = X1 + X1 * X1

X1 is continuous

Analysis of variance table for Y, using Adjusted SS for tests

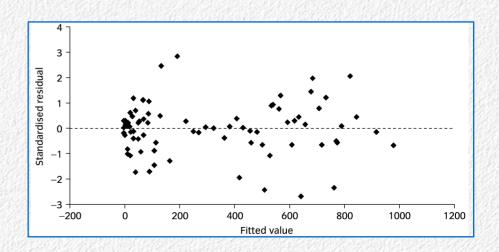
· ·			,	0	,			
Source	DF	Seq S	S	Ad	j SS	Adj MS	F	Р
X1	1	6 66	3 021		3 597	3 597	0.60	0.442
X1 * X1	1	25	6 148	25	6 148	256 148	42.62	0.000
Error	77	46	2 798	462	2 798	6 010		
Total	79	7 38	1 967					
Coefficient	s table							
Term	Co	ef	SECo	ef	Т	Р		
Constant	-7.	62	24.21		-0.31	0.754		
X1	3.	189	4.12	2	0.77	0.442		
X1*X1	0.	8525	0.13	06	6.53	0.000		



Including a quadratic term meets GLM assumptions

 $Y1 = -7.62 + 3.189^{*}X1 + 0.825^{*}X1^{2}$

This is complex enough to meet assumptions Should we include a cubic term? How would we know if that makes the model too complex?



Using adjusted R² to pick a model that balances bias and variance

Adjusted R² helps us select the best model when predictors are not orthogonal

 $R^2 = \frac{\text{Total SS} - \text{Residual SS}}{\text{Total SS}}$

Multiple R² always increases with every additional x-variable

$$R_{\rm adj}^2 = \frac{\text{Total MS} - \text{Residual MS}}{\text{Total MS}}$$

Adjusted R² increases when an added variable explains enough variation to compensate for reduced residual d.f.

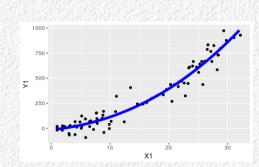
Adding a poor predictor (with F < 1) can decrease R^{2}_{adj} Thus, selecting the model with the highest adjusted R^{2} balances bias and variance

Should we include a cubic?

 $Y1 = -15.75 + 6.179 \times X1 + 0.6169 \times X1^2 + 0.00500 \times X1^3$

Р

0.379 0.732



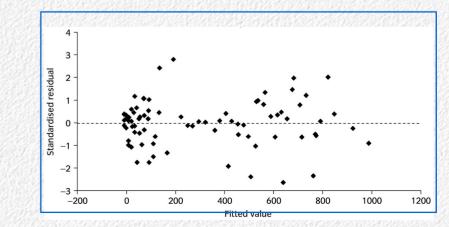
General Linear Model

Word equation: Y1 = X1 + X1 * X1 + X1 * X1 * X1 X1 is continuous

Analysis of variance table for y using A diveted SS for tests

Analysis of variance table for Y , using Adjusted SS for tests								
Source	DF	Seq SS		Adj	SS	Ac	lj MS	F
X1	1	6 663	021	2	505	2 5	505	0.41
X1 * X1	1	256	148	4	763	47	763	0.78
X1 * X1 * X1	1		720		720	7	720	0.12
Error	76	462	078	462	078	6 (080	
Total	79	7 381	967					
Coefficients tab	ole							
Term	Coef		SEC	oef	Т		Р	
Constant	-15.7	5	33.9	2	-0.4	16	0.644	
X1	6.1	79	9.6	25	0.6	54	0.523	
X1 * X1	0.6	169	0.6	971	0.8	39	0.379	
X1 * X1 * X1	0.0	0500	0.0	1452	0.3	34	0.732	

Increases the SE's on the coefficients Only tiny increase in R^2 – from 0.9373 to 0.9374 Adjusted R² declines slightly from 0.9357 to 0.9349 So, no – don't include the cubic 0.523



Second issue – which set of predictors is best?

- Goal is to build a model that best explains variation in the predictor
- Meeting assumptions is necessary, but not sufficient
 - May meet GLM assumptions with model that has a very low R²
 - May meet GLM assumptions with more than one model
- Can use adjusted R² as a criterion to compare alternative models, pick the one with the highest adjusted R²

Example: modeling systolic blood pressure

- Two measures are taken for blood pressure: systolic (heart contraction) and diastolic (rebound of arterial walls)
- Measures of systolic blood pressure for 39 men who had migrated from living at high elevation to low elevation in Peru
- Predictors recorded are:
 - Years (since migration), age
 - Weight, height
 - Chin (skin fold thickness), forearm (skin fold), calf (skin fold)
 - Pulse
- What set of predictors gives the best model of systolic blood pressure?

Every predictor included – good model?

General Linear Model

Word equation: SYSTOL = YEARS + WEIGHT + AGE + HEIGHT + CHIN + FOREARM + CALF + PULSE

YEARS, WEIGHT, AGE, HEIGHT, CHIN, FOREARM, CALF and PULSE are all continuous.

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
YEARS	1	50.0	697.6	697.6	6.41	0.017
WEIGHT	1	2698.3	2201.7	2201.7	20.22	0.000
AGE	1	27.9	97.4	97.4	0.89	0.352
HEIGHT	1	61.4	263.6	263.6	2.42	0.130
CHIN	1	366.9	249.3	249.3	2.29	0.141
FOREARM	1	42.7	59.2	59.2	0.54	0.467
CALF	1	14.7	16.2	16.2	0.15	0.703
PULSE	1	3.0	3.0	3.0	0.03	0.870
Error	30	3266.7	3266.7	108.9		
Total	38	6531.4				

 $R^2 = 50.0\%$ $R^2(adj) = 36.6\%$

Maybe, can we do better?

Poor predictors decrease adjusted R², increase standard errors of coefficients

Adjusted R² is better for simpler model (yellow)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	50.3191	15.8184	3.181	0.00302	* *
YEARS	-0.5718	<mark>0.1879</mark>	-3.043	0.00436	**
WEIGHT	1.3541	<mark>0.2672</mark>	5.067	1.22e-05	* * *

Residual standard error: 10.25 on 36 degrees of freedom Multiple R-squared: 0.4208, Adjusted R-squared: 0.3886 F-statistic: 13.08 on 2 and 36 DF, p-value: 5.385e-05

Standard error for years (blue) and weight (orange) are smaller for simpler model R² higher for complex model, but would be true even if we generated random data Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	127.40514	58.72121	2.170	0.0381	*
YEARS	-0.57359	<mark>0.22662</mark>	-2.531	0.0168	*
WEIGHT	2.11448	<mark>0.47024</mark>	4.497	9.61e-05	* * *
AGE	-0.27493	0.29068	-0.946	0.3518	
HEIGHT	-0.06727	0.04323	-1.556	0.1302	
CHIN	-1.33839	0.88460	-1.513	0.1407	
FOREARM	-1.06039	1.43822	-0.737	0.4667	
CALF	0.24467	0.63499	0.385	0.7027	
PULSE	0.03357	0.20388	0.165	0.8703	

Residual standard error: 10.44 on 30 degrees of freedom Multiple R-squared: 0.4998, Adjusted R-squared: 0.3665 F-statistic: 3.748 on 8 and 30 DF, p-value: 0.003783

So, the simpler model is preferred for these data

Problem: groups of variables

- Sometimes effects of one variable depend on inclusion of another
 - Variables may be confounded adding or removing one while others are in may not improve adjusted R²
 - The effect of one variable may be strong, but only after another is included – adding the variable alone may not improve adjusted R², but adding both together would
- Solution: can add or remove groups of variables at once
 - Can test for statistical significance of groups of variables by combining the terms

General Linear Model

Word equation: SYSTOL = YEARS + WEIGHT + AGE + HEIGHT + CHIN + FOREARM + CALF + PULSE

YEARS, WEIGHT, AGE, HEIGHT, CHIN, FOREARM, CALF and PULSE are all continuous.

Analysis of variance for SYSTOL, using Adjusted SS for tests

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
YEARS	1	50.0	697.6	697.6	6.41	0.017
WEIGHT	1	2698.3	2201.7	2201.7	20.22	0.000
AGE	1	27.9	97.4	97.4	0.89	0.352
HEIGHT	1	61.4	263.6	263.6	2.42	0.130
CHIN	1	366.9	249.3	249.3	2.29	0.141
FOREARM	1	42.7	59.2	59.2	0.54	0.467
CALF	1	14.7	16.2	16.2	0.15	0.703
PULSE	1	3.0	3.0	3.0	0.03	0.870
Error	30	3266.7	3266.7	108.9		
Total	38	6531.4				
$R^2 = 50.0\%$	$R^2(a$	(dj) = 36.6%				

Skin fold thickness still not significant when all three are grouped – lack of significance is not due to confounding between them

Combining terms – testing related variables as a group

DF	SeqSS
1	366.9
1	42.7
+ 1	14.7
3	424.3

MS=424.3/3=141.4

F = 141.4/108.9 = 1.30

on 3 and 30 DF

P-value: p=0.293

Automating the search – stepwise regression

- Meant to help find the best from a large number of possible models
- Stepwise regression = automated model construction based on a set of rules
 - An initial model is selected, then terms are added or dropped one at a time
 - If a variable is dropped and fit goes down substantially, the variable is put back in
 - If a variable is added and it does not contribute to an increase in fit, it is omitted
- This process is repeated until no further improvements are found

Worked example of blood pressure data on course web page...

Criticisms of stepwise procedures

- Machine intelligence is not as good as real intelligence
- Groups of variables may need to be entered or removed
- Investigator's choice of forward vs. backward selection
 - Forward selection = starting simple, adding variables each step
 - Backward selection = starting with all variables included, removing variables each step

...sometimes arrive at different models, so which to use?

If the final model depends on judgment, better to make the decisions yourself

Models are hypotheses about your data

- The model you build is a statement of a hypothesis about the structure in the response variable
 - Including a predictor in a model is a hypothesis that it affects the response
 - Omitting a predictor is a hypothesis that the response is independent of it
 - Including an interaction is a hypothesis that the effect of one predictor depends on the level of another
 - Including a polynomial term (squared, cubic, etc.), or log-transforming predictor or response hypothesizes a non-linear relationship
 - The levels used in a categorical variable is a hypothesis that there will be differences on average between those groups, and only between those groups
- Adjusted R² is then a measure of which hypothesis is best supported by the data
- We will use model selection to test hypotheses for the rest of the semester

In summary...

- Model selection allows us to seek the best representation for the data in hand
- Important principles:
 - Balancing bias against variance (R² against standard errors of estimates)
 - Economy of variables: use adjusted R² to avoid making models too complex
 - Models need to be complex enough to meet GLM assumptions
 - Avoiding multiplicity of p-values: simplify as much as possible, only fit reasonable models
- Orthogonal designs make model choice simpler
- Stepwise procedures automate model choice, but the final models depend on analysts choices given this, it's usually better to build and evaluate your own

What is the model?

