
  

Principles of model selection



  

Linear models as tests of treatment effects
● We often think of statistical analysis as tests of a treatment effect

– If the treatment has no effect at all the null hypothesis would be true 
(Ho: μTreatment = μControl)

– Testing the null hypothesis is a test of the treatment effect
● Good way to think about statistical analysis for simple experiments:

– Variable Treatment, levels Treatment and Control
– Single measured response
– All nuisance variables held constant
– Random assignment of subjects to treatment levels



  

Best case: complete, balanced designs
● Experiment to find the conditions under which potatoes rot the 

slowest
● Response variable is a measure of rot
● Factors tested that could affect rotting speed were:

– BAC = bacterial inoculation (3 levels)
– TEMP = temperture (2 levels)
– OXYGEN = oxygen levels (3 levels)

● Question is: which combination of factors give the lowest amount 
of rot?



  

It’s easy when 
design is 

orthogonal

Include all the 
predictors initially

Response: ROT
          Df  Sum Sq Mean Sq F value    Pr(>F)   
 
BAC        2  651.81  325.91 14.8390 9.608e-06
TEMP       1  848.07  848.07 38.6138 1.180e-07
BAC:TEMP   2  152.93   76.46  3.4815   0.03874  
Residuals 48 1054.22   21.96                     
 

Drop all non-significant terms

SS are the same, but p-
values are smaller, why?

Response: ROT
                Df Sum Sq Mean Sq F value    Pr(>F)    
BAC              2 651.81  325.91 13.9123 3.339e-05 ***
TEMP             1 848.07  848.07 36.2024 6.599e-07 ***
OXYGEN           2  97.81   48.91  2.0877   0.13872    
BAC:TEMP         2 152.93   76.46  3.2640   0.04981 *  
BAC:OXYGEN       4  30.07    7.52  0.3209   0.86207    
TEMP:OXYGEN      2   1.59    0.80  0.0340   0.96661    
BAC:TEMP:OXYGEN  4  81.41   20.35  0.8688   0.49206    
Residuals       36 843.33   23.43                      



  

Interpreting the best model



  

But, studies are often not so simple
● Complex experimental conditions

– Nuisance variables (some of which can’t be randomly assigned)
– Covariates (some of which can’t be blocked) → lack of independence of predictors
– Repeated measurements of the same individuals → lack of independence of data 

values
● Complex responses to treatment variables

– Possible interactions, nonlinearities
– Multiple correlated predictors, confounding

● Best to approach analysis of complex studies as statistical modeling of the 
structure in the data
– Once the best model is found, it can be interpreted



  

Model bias and variance
● Bias = an estimator does not equal 

the parameter it estimates over the 
long run
– Opposite of accuracy
– Bias assessed by whether the model puts 

predicted values in the middle of the data
● Variance = how far apart repeated 

estimates are from one another
– Opposite of precision
– Standard error of estimates represents 

variance



  

Problem: bias and variance trade off
● We can decrease bias by making a model more complex

– Adding variables
– Adding interactions
– Adding quadratic, cubic, 

etc. terms
● Doing this increases variance 

because:
– Predictors reduce error DF
– If predictors are correlated standard errors increase

● Building statistical models balances bias and variance

Number of 
parameters

Variance

Bi
as

Optimal model 
complexity



  

Problem: complex models don’t generalize well
● Seems that we should want to explain as much variation in the response 

as possible
– 100% explained variation is the goal
– More explained variation seems to indicate better understanding of the underlying 

causes of variation in the response
● But, need to prevent over fitting

– Over-fitted model is tailored to the quirks of the data set on which it was 
developed → high R2

– Incorrectly attributing some of the random variation to real, fixed effects
● An over-fitted model performs poorly when it’s applied to a new data set → 

doesn’t generalize well



  Which line has the highest r2?

ŷ=β0+β1 X+β2 X
2+β3 X

3+β4 X
4

ŷ=β0+β1 X

Example – which line is a better model for the 
data?



  

Which looks better now?

Small changes in position 
of data points ruin the 
polynomial R2

Nearly the same for the 
straight line

●

Even though the polynomial fits the original data better, the simple linear model 
generalizes better

●
●

●●



  

What is the right amount of complexity?
● The number of models possible is often large, increases rapidly 

with number of predictors
– With 3 predictors there are 7 models without interactions, 15 with 

interactions
– With 6 predictors there are 63 models without interactions, more than 

30,000 with interactions
● Q: What is the minimum acceptable model complexity?
● A: Whatever is needed to meet model assumptions



  

Minimally, must meet assumptions

First rule is that the model must 
meet GLM assumptions – as 
complex as needed to do this

For continuous predictors, 
consider adding polynomial 
terms, if there is evidence of non-
linearity

Can we meet GLM assumptions with a linear, quadratic, or cubic fit?



  

Linear – poor fit

Not complicated enough!

Add a quadratic term to see if GLM 
assumptions are met



  

Including a quadratic term 
meets GLM assumptions

Y1 = -7.62 + 3.189*X1 + 0.825*X12

This is complex enough to meet assumptions
Should we include a cubic term? How would 
we know if that makes the model too complex?



  

Using adjusted R2 to pick a model that balances 
bias and variance

Multiple R2 always increases with every 
additional x-variable

Adjusted R2 increases when an added variable 
explains enough variation to compensate for reduced 
residual d.f.
Adding a poor predictor (with F < 1) can decrease R2

adj 
Thus, selecting the model with the highest adjusted R2 
balances bias and variance

Adjusted R2 helps us select the best model when predictors are not orthogonal



  

Should we include a cubic?
Y1 = -15.75 + 6.179*X1 + 0.6169*X12 + 0.00500*X13

Increases the SE's on the coefficients
Only tiny increase in R2 – from 0.9373 to 0.9374
Adjusted R2 declines slightly from 0.9357 to 0.9349
So, no – don't include the cubic



  

Second issue – which set of predictors is best?
● Goal is to build a model that best explains variation in the 

predictor
● Meeting assumptions is necessary, but not sufficient

– May meet GLM assumptions with model that has a very low R2

– May meet GLM assumptions with more than one model
● Can use adjusted R2 as a criterion to compare alternative 

models, pick the one with the highest adjusted R2



  

Example: modeling systolic blood pressure
● Two measures are taken for blood pressure: systolic (heart contraction) 

and diastolic (rebound of arterial walls)
● Measures of systolic blood pressure for 39 men who had migrated from 

living at high elevation to low elevation in Peru
● Predictors recorded are: 

– Years (since migration), age
– Weight, height
– Chin (skin fold thickness), forearm (skin fold), calf (skin fold)
– Pulse

● What set of predictors gives the best model of systolic blood pressure?



  

Every predictor included – good model?

Maybe, can we do better?



  

Poor predictors decrease adjusted R2, increase 
standard errors of coefficients

So, the simpler model is preferred 
for these data 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  50.3191    15.8184   3.181  0.00302 ** 

YEARS        -0.5718     0.1879  -3.043  0.00436 ** 

WEIGHT        1.3541     0.2672   5.067 1.22e-05 ***

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) 127.40514   58.72121   2.170   0.0381 *  

YEARS        -0.57359    0.22662  -2.531   0.0168 *  

WEIGHT        2.11448    0.47024   4.497 9.61e-05 ***

AGE          -0.27493    0.29068  -0.946   0.3518    

HEIGHT       -0.06727    0.04323  -1.556   0.1302    

CHIN         -1.33839    0.88460  -1.513   0.1407    

FOREARM      -1.06039    1.43822  -0.737   0.4667    

CALF          0.24467    0.63499   0.385   0.7027    

PULSE         0.03357    0.20388   0.165   0.8703 

Residual standard error: 10.25 on 36 degrees of freedom

Multiple R-squared:  0.4208,    Adjusted R-squared:  0.3886 

F-statistic: 13.08 on 2 and 36 DF,  p-value: 5.385e-05

Residual standard error: 10.44 on 30 degrees of freedom

Multiple R-squared:  0.4998, Adjusted R-squared:  0.3665 

F-statistic: 3.748 on 8 and 30 DF,  p-value: 0.003783

Adjusted R2 is better for simpler model (yellow)

Standard error for years (blue) and weight 
(orange) are smaller for simpler model
R2 higher for complex model, but would be 
true even if we generated random data



  

Problem: groups of variables
● Sometimes effects of one variable depend on inclusion of 

another
– Variables may be confounded – adding or removing one while others 

are in may not improve adjusted R2

– The effect of one variable may be strong, but only after another is 
included – adding the variable alone may not improve adjusted R2, 
but adding both together would

● Solution: can add or remove groups of variables at once
– Can test for statistical significance of groups of variables by 

combining the terms



  

Combining terms – 
testing related variables 

as a group
DF SeqSS

1 366.9

1 42.7

1 14.7

3          424.3

MS=424.3/3=141.4

F = 141.4/108.9 = 1.30

on 3 and 30 DF

P-value: p=0.293

+

Skin fold thickness still not significant when 
all three are grouped – lack of significance 
is not due to confounding between them



  

Automating the search – stepwise regression
● Meant to help find the best from a large number of possible models
● Stepwise regression = automated model construction based on a set 

of rules
– An initial model is selected, then terms are added or dropped one at a time
– If a variable is dropped and fit goes down substantially, the variable is put 

back in
– If a variable is added and it does not contribute to an increase in fit, it is 

omitted
● This process is repeated until no further improvements are found

Worked example of blood pressure data on course web page...



  

Criticisms of stepwise procedures
● Machine intelligence is not as good as real intelligence
● Groups of variables may need to be entered or removed
● Investigator’s choice of forward vs. backward selection

– Forward selection = starting simple, adding variables each step
– Backward selection = starting with all variables included, removing 

variables each step

...sometimes arrive at different models, so which to use?
● If the final model depends on judgment, better to make the 

decisions yourself



  

Models are hypotheses about your data
● The model you build is a statement of a hypothesis about the structure in the 

response variable
– Including a predictor in a model is a hypothesis that it affects the response
– Omitting a predictor is a hypothesis that the response is independent of it
– Including an interaction is a hypothesis that the effect of one predictor depends on the level 

of another
– Including a polynomial term (squared, cubic, etc.), or log-transforming predictor or 

response hypothesizes a non-linear relationship
– The levels used in a categorical variable is a hypothesis that there will be differences on 

average between those groups, and only between those groups
● Adjusted R2 is then a measure of which hypothesis is best supported by the data
● We will use model selection to test hypotheses for the rest of the semester



  

In summary...
● Model selection allows us to seek the best representation for the data in hand
● Important principles: 

– Balancing bias against variance (R2 against standard errors of estimates)
– Economy of variables: use adjusted R2 to avoid making models too complex
– Models need to be complex enough to meet GLM assumptions
– Avoiding multiplicity of p-values: simplify as much as possible, only fit reasonable 

models
● Orthogonal designs make model choice simpler
● Stepwise procedures automate model choice, but the final models depend on 

analysts choices – given this, it's usually better to build and evaluate your own



  

What is the model?

Malondialdehyde
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