
  

Criticisms of null hypothesis significance testing



  

Why do we statistically analyze data?
● We are biologists, not statisticians

– We do not conduct experiments to generate data sets for statistical analysis
– If statistics was just a bunch of hoops to jump through we would not do it

● We use statistical analysis to help us draw reliable scientific 
conclusions from experimental data
– We want to learn what we can from data
– We want to avoid being misled by it

● Statistical analysis is only worthwhile if it allows us to reach this goal



  

Dealing with experimental uncertainty
● We work with a small subset of experimental subjects, but want our 

results to uncover things that are true in general
– In other words, we work with samples, but we want to draw conclusions 

about populations
● Inferential statistics is the tool we use to draw conclusions about 

populations based on sample data
● In Biology (and many other fields), null hypothesis significance 

testing (NHST) is overwhelmingly the inferential statistical approach 
of choice

● But, it’s not the only one possible, and it has its detractors



  

What is null hypothesis significance testing, 
really?

● The procedure is:
– Assume a null hypothesis is true

● No relationship between variables
● No difference from a hypothetical value
● Independence

– Conduct an experiment that provides a sample 
of data with which to assess the hypothesis

– Calculate the probability of obtaining 
observed experimental result if the 
null hypothesis is assumed true

– If the probability is small (typically p < 0.05), 
reject the null in favor of the alternative hypothesis

● NHST’s do not tell us the probability that the null hypothesis is true, or that the 
alternative is true



  

This procedure is not universally admired

● Introduced in the 1930's, criticized 
at the time

● Criticisms have increased over time
● In 2015 the journal Basic and 

Applied Social Psychology banned 
NHST's

● What's wrong with NHST’s?



  

Cohen's case: problems with NHST's
● They don't tell us what we want to know
● They are logically flimsy, and encourage faulty reasoning (logical fallacies)
● They encourage false dichotomies
● They throw away useful information
● They use as evidence events that are never seen
● If randomization of subjects to treatment groups isn't possible, the null 

hypothesis is never true
● Publication bias against non-significant results causes problems for 

science



  

Charge: NHST's don't tell us what we want to 
know

● We want to know: “Given the data we have collected, what is the probability that 
some scientific hypothesis is true?”
– The scientific hypothesis is almost never the null, almost always an alternative hypothesis
– We want to know p(Ha|data)

● What an NHST asks is: “Assuming the null hypothesis is true, what’s the 
probability of observing the data?”
– That is, p(data|Ho)

● These are not the same
● Cohen: NHST “...does not tell us what we want to know, and we so desperately 

want to know what we want to know that, out of desperation, we nevertheless 
believe it does!”



  

When we test a null hypothesis the possible 
outcomes are:

Hypothetical example 
that supposes:
-Real effects are rare 
(only 10% of tests, so 
P(real) = 0.1)
-Power is always the 
same (80% chance of 
detecting a real effect)
-The traditional alpha 
level of 0.05 is used
From Colquhoun 2014

http://rsos.royalsocietypublishing.org/content/1/3/140216#xref-ref-2-1


  

125 positive tests
80 true positives
45 false positives

If we reject the null (test is positive)...

P(true positive | reject Ho) = 80/125 = 0.64 ← lower than power of 0.8
P(false positive | reject Ho) = the false discovery rate (FDR) = 
45/125 = 0.36  ← much higher than the 0.05 alpha level



  

875 negative tests
855 true negatives
20 false negatives

If we retain the null...

P(true negative | retain Ho) = 855/875 = 0.98 ← good, what we want
P(false negative | retain Ho) = 20/875 = 0.02



  

FDR is too high, what can we do?
● There are three things we can change:

– The alpha level we use
– The power of each test
– The probability that the null hypotheses we test are false

● Changing alpha to avoid false positives is a bad idea – 
increases false negatives

● What about the other two?



  

What if we increased power to 0.95?

False discovery rate for power of 0.95 = 45/(95+45) = 0.32
In this example, best FDR possible by improving power = 
45/(100+45) = 0.31 ← still much higher than 0.05

1000 tests

Real effect 
in 100 
tests

No effect in 
900 tests

95 true positive 
(95% reject)

5 false negative 
(5% retain)

855 true negative 
(95% retain)

45 false positive 
(5% reject)

P(real) = 0.1

Power = 0.95

Sig. level = 0.05

How do we increase 
power?



  

What if we tested better hypotheses?

False discovery rate = 25/(400+25) = 0.058
Probability of rejecting a false null = 400/(400+25) = 0.942

1000 tests

Real effect 
in 500 
tests

No effect in 
500 tests

400 true positive 
(80% reject)

100 false negative 
(20% retain)

475 true negative 
(95% retain)

25 false positive 
(5% reject)

P(real) = 0.5

Power = 0.8

Sig. level = 0.05

Change the “prior” 
probability that the null is 
true
Problem: how can we 
know, much less set, 
P(real)?



  

NHST's encourage logical fallacies
● Example 1: trying to interpret low probability as impossible
● We want the logic to be:

If the null hypothesis is true, then a difference in mean of 10 g is impossible
– The difference in means is 10 g
– Therefore, the null is false

● Instead, the logic is:

If the null hypothesis is true, then a difference in mean of 10 g has a low 
probability
– We observed a difference of 10 g
– Therefore the null hypothesis is unlikely to be true



  

Same structure of inference...

If you are an American citizen, you have a low probability of 
being a member of the Senate (0.00000032)
– Dianne Feinstein is a member of the Senate
– Therefore Dianne Feinstein is probably not an American citizen

...problem?



  

Fallacy 2: rejecting a null does not support a 
specific alternative

● If we reject the null, some other hypothesis may be more 
consistent with the experimental result, but which one?

● The statistical alternative is expressed as “not the null”
 

● If our sample gave us a mean of x̄ = 39, rejecting the null of 
μ = 37 is not evidence that μ = 39, it's just evidence that μ ≠ 37

H 0 :μ=37 H A :μ≠37



  

So why not test Ha?

● We could, if we knew what to 
use for Ha

– If Ho is μ = 37, what should Ha be?
– We could pick a number a-priori, if 

we have some basis for selecting 
one

– We can’t just use our observed 
mean (x̄) as the hypothetical 
value for μ because...

Probability of a result equal to or 
greater than observed x̄ if we 
assume that μ = x̄



  

What we can do...
● Use sample mean (x̄) as our 

best estimate for μ → use as middle of 
a sampling distribution

● Calculate a range of values that we can 
expect to observe if we repeated the 
experiment many times (say, the values 
we expect in 95% of the repetitions)

● If the hypothetical value of 37 falls 
inside this range, there is still a good 
chance it’s the right value for μ

● There’s a name for this…



False dichotomies

● Dichotomy = two options
● NHST tests a dichotomy – null vs. not null
● The scientific hypothesis we are interested in is usually a “not 

null” hypothesis
● But, there are many possible “not null” hypotheses, not just 

our single pet hypothesis
● Example: anti-herbivory adaptations in plants



Milkweed latex

● Milkweed produces a sticky, white 
latex full of toxic compounds

● Most caterpillars die if they eat it
● Scientific hypothesis: caterpillars 

avoid eating plants with latex



Do an experiment to test the hypothesis
● Place leaves from milkweeds and lettuce in jars
● Place a caterpillar in each jar
● Difference between leaf weights before and after caterpillar treatment 

gives you weight consumed
● Compare weight of milkweed consumed to weight of lettuce consumed
● Null hypothesis?
● If we reject the null, does that mean caterpillars avoid eating 

milkweed?



Problem: more than one explanation fits the 
data

● There are at least three possibilities:
– Caterpillars can tell which plants are toxic, and avoid the toxic ones 

(our pet hypothesis)
– Caterpillars choose leaves at random, but if they pick a toxic species 

they take a bite and die (one not-pet hypothesis)
– Caterpillars can't detect latex, but they prefer to eat lettuce (another 

not-pet hypothesis)
● It is easy to treat data analysis as a rote exercise, jump to 

conclusions if we use a “reject/retain” approach



  

Fallacious reasoning III
NHST's are not always appropriate

● Cohen's example: We believe that a disease does not occur in 
a population (infection rate = #infected/pop. size = 0)

● We take a sample from 30 individuals, and find the disease in 1 
of them, for a rate of 1/30 = 0.03

● Can we test whether infection rate is significantly higher than 0? 
Do we have enough power?

● Why is this a silly question?



  

Charge: null hypotheses are almost always false
● A null hypothesis is only true if:

– The treatment has exactly zero effect, and...
– Experimental subjects are randomly assigned to treatment groups

● If either is not true, the 
null is false – the differences 
may be tiny, but is not 0

● Tiny differences can be detected 
with a large enough sample size

● NHST beceoms a test of whether 
sample size is big enough for p to 
be less than 0.05



  

Which treatments can be randomly assigned 
to subjects?

● Sex – male, female
● Salinity of water in tanks in 

the lab
● Species
● Fertilizer type
● Age – adult, juvenile
● Greenhouse

● Genotype (strain)
● Coat color
● Geographic location of 

sample
● Cover type (forest, prairie, 

urban development, etc.)



  

Charge: NHST's throw away the interesting 
information

● p values are influenced by:
– Amount of difference between groups
– Amount of random variation
– Sample size

● Relying on p as a measure of size of effect is flawed
● Example: response to a drug

Small p-values can be 
due to various 
combinations of these



  

Drug 1 Drug 2
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Mean = 0.11
95% CI = 0.09-0.13

Mean = 2.15
95% CI = 0.48-3.82

p = 0.0000000001 p = 0.007

Which drug worked better?

The confidence intervals give much more information
What does the p-value add?



  

Charge: NHST's lead to publication bias, 
thwart meta-analysis

● Non-significant results are hard to publish (why?)
● Published papers favor positive results, which will be a mix of:

– True positives
– False positives

● Negative results are not published, and they include a mix of:
– True negatives
– False negatives

● This causes problems for meta-analysis = analysis of consistency 
of results across repeated experiments



  

Example of meta-analysis: flowering dates in 
British flowers

● First flowering dates 
(FFD) taken from 
various published 
sources, reports

● Question asked is: 
have FFD's changed 
recently (due to 
global warming)?

Changes in first 
flowering dates for 
385 species of 
British plants

● What would happen to the analysis if only 
flowers whose FFD's had changed 
significantly were reported?



  

Solutions?
● More thoughtful use of NHST's – recognize what they can and 

can't tell us
● More attention to effect sizes, means and confidence intervals
● Power analysis ... if done properly
● Bayesian approaches that account for prior probabilities that 

hypotheses are true
➔ Likelihood-based inference and model selection



  

Likelihood-based inference
● Weighs the relative support for competing hypotheses from a data set
● Can be understood in the context of frequentist statistics (don’t need 

to be a Bayesian)
● Maximum likelihood as an estimation method is extremely well 

established, well accepted
● Likelihood-based inference can be applied to standard statistical 

modeling
● Increasingly popular approach in Biology
● This is where we're going next



  

What’s the model?
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