
  

Likelihood-based model selection

● Models as hypotheses (again, for real this time)
● Approximating models
● Support for competing hypotheses
● Information-theoretic criteria (AIC)
● Model uncertainty



  

Models are hypotheses

● In the sense that...
– Hypothesize the response depends on a predictor by including the predictor 

in the model
● Hypothesize the response is independent of a predictor by leaving it out of the model

– Hypothesize observations are different on average by splitting them into 
different categories

● Hypothesize that levels of a categorical variable are not different on average by 
combining them

– Hypothesizes that the response to one predictor depends on the level of 
another by including an interaction

● Hypothesize that the response to one predictor is independent of the response to the 
other by excluding an interaction



  

Wingspan differs between species Wingspan depends on log mass

Wingspan differs between species, and 
depends on log mass

Relationship between wingspan and log 
mass depends on species

WS ~ species WS ~ log.mass

WS ~ species + log.mass WS ~ species * log.mass



  

The problem to be solved...

● According to statistician George E.P. Box “all models are wrong, 
but some are useful”

● Wrong in that:
– They are abstractions, simplifications
– Do not contain all of the information in the data

● Useful if:
– They help us derive knowledge from data

● How do we judge which models are the least wrong and most 
useful? We find the model best supported by the data



  

The distance between two models

● K-L distance (or K-L information) = measure of distance between any two models
– Developed by Solomon Kullback and Richard Leibler

● Assume one of the models, f(x), is the True model (that is, we assume f(x) exists 
but we don’t know its properties)

● Second model is g(x|Φ) – used to approximate the True model, with parameter Φ
● K-L distance measures how much information about the true model, f(x), is lost 

when it’s approximated by g(x|Φ)
– Smaller values = less loss of information, which is better

I ( f , g )=∫ f (x ) ln( f ( x)
g (x∣ϕ))dx



  

Different approximations 
to a model

Artificial example – the red quadratic curve is the 
“true model”

Which looks like the best approximation?

If K-L distance is a good measure of distance 
between models, it should distinguish these four 
cases

Should also have “good properties”, such as 
transitivity, which means that:

If B is better supported than A, 

and 

C is better supported than B, 

then 

C should be better supported than A

The model to be 
approximated

Approximating 
models



  

We don’t know the True Model...problem?

● The true model, f(x), is part of the equation, but we don’t know 
what it is

● Solution: compare different models to one another
– f(x) is the one that generated the data → f(x) will have the highest 

likelihood given the data
– The closer a model is to f(x) the better an approximation it is, and the 

better supported it will be by the data
– Therefore, of the models being considered, the one with the best 

support from the data is the one that is closest to f(x)



  

Using likelihoods to approximate
K-L distance

● We can approximate K-L distance using “Akaike’s Information Criterion”:

● AIC equals K-L distance up to an (unknown) additive constant (AIC = KL + C)
● Balances fit (likelihood) and complexity (# parameters = K)

– Higher the likelihood the smaller -2ln(L(model|data)) is
– Greater the number of parameters the larger 2K is

● Comparing AIC’s for two models, Model 1 and Model 2
– AIC

1
 – AIC

2
 = KL

1
 + C – (KL

2
 + C) = KL

1
 – KL

2

– Therefore, the difference between AIC's is also the differences between K-L distances
– We can know AIC1-AIC2 = KL1 - KL2 even if we don’t know f(x), or C

AIC=−2 ln (ℒ (model∣the data))+2 K



  

AIC values

● As expected, best model is D

D: AIC = 215.01
C: AIC = 216.80
B: AIC = 221.07
A: AIC = 228.58

● The magnitudes are 
unimportant, only the 
difference between them 
matters



  

ΔAIC

● Interpretation of results focuses on differences in AIC between 
models, symbolized as ΔAIC
– Identify the model with the lowest AIC
– Subtract smallest AIC from all the model AIC's → ΔAIC

● ΔAIC's indicate differences in support for models in the data 
– ΔAIC = 0 is best supported
– ΔAIC less than 2 indicates fairly equivalent support
– ΔAIC between 4 and 7 indicate substantial differences in support 
– ΔAIC greater than 10 indicates essentially no support for a model 

relative to the best supported



  

Example

Best model is D, but C is also well 
supported

DAIC's:

D =  0.00
C =  1.79
B =  6.06
A = 13.57



  

Refinements to AIC

● For sample sizes per parameter (n/K) < 40 use AICc

● Penalty for complexity is larger when n is small
● Why? Adding more parameters is a bigger problem with less 

data, and should incur a greater penalty

AIC c=AIC+
2K (K +1)
n−K−1



  

Example: butterfly data

● Frequency of alleles for a gene are thought to be changing due 
to differences in environmental conditions

● Temperature and precipitation are leading candidates, but they 
also are correlated

● Is one explanation better supported than the other? Or are they 
indistinguishable from one another?



  

The basic patterns

Several high correlations

Elevation is correlated with 
precipitation, max, and min 
temperature

Precipitation, max and min are 
inter-correlated with one another

Which variables best explain 
allele frequency?

Do we need both temperature 
measurements?



  

Do we need both min temp and max temp?

Allele frequency was modeled with max temp, min temp, and both together

Max and min is Allele.freq ~ Max + Min
Max is Allele.freq ~ Max
Min is Allele.freq ~ Min

Should we drop a temperature?



  

What environmental characteristics best explain 
variation in this gene?

● Use maximum temp, minimum temp, precipitation and elevation 
to predict gene frequency

● Biologically sensible hypotheses, not necessarily all possible
– Include each alone
– A model with max, min, precip
– A model with max*min*precip
– Models with two-way interactions between max*precip, min*precip



  

The full set of models compared

Can have different predictors, but all must use the same response (allele frequency)
Is the best supported model the one with the highest R2?
Compare AIC to AICc – sample size important?



  

Model fit, assumptions

● We must still pay attention to meeting assumptions, measures 
of explained variation
– Likelihoods are based on a specified distribution of residuals (we're 

assuming normal)
– Our analysis only tells us which model is best relative to the others 

under consideration – could be the best is still terrible

● Need to check assumptions on well-supported models
● Need to check that best supported models are any good at all



  

No obvious problems in the model fit



  

What if the best supported model sucks?

● Lack of a null hypothesis means we aren't considering the “no effect” 
possibility

● We can fix this with an intercept only model
– Allele frequency is modeled as independent of all 

the predictors
– The intercept is the mean of the response variable 

(mean allele.freq)

● If none of the models is better supported than the 
intercept only model, then none of them should 
be interpreted

● Note that the null hypothesis isn’t special with this 
method – just another hypothesis



  

With intercept only added...

So, all the models in the set are better than the null, but Max + Min + Precip is 
the best of the bunch



  

Model uncertainty

● There may not be a single best-supported hypothesis in the set 
under consideration

● We can increase the chances of a clear winner by:
– Designing informative experiments 

● Measure variables for which predictions of competing hypotheses are different
● Maximize the amount of independent variation between predictors to minimize 

confounding (that is, use good experimental design)

– Increasing sample size

● But, we need a way to evaluate our confidence in our best model



  

Measuring model uncertainty

● We can calculate “Akaike weights” that help us deal with 
uncertainty about degree of support for competing models

● Measure the probability that a model would be selected as best 
if the experiment were repeated
– Vary between 0 and 1
– Sum to 1 across the set of models 

being compared

● Ideally, the best-supported 
hypothesis will have a weight 
near 1, and the rest will have 
weights near 0

w i=
exp(−

1
2

Δi)

∑ exp (−1
2

Δ)



  

Akaike weights

The best supported model is expected to be the best model 76.8% of the time, if the study 
was repeated

The second and third best supported models would be selected 10-12% of the time



  

Do p-values give the same impression about 
model support?

If only one of these was presented with a p-value, would we doubt it was well 
supported?



  

What if multiple models are well supported?

● Say so! Interpret all well-supported models, discuss the 
similarities and differences
– Separating the well-supported from the poorly supported models is 

worthwhile, even if more than one are well supported

● The importance of individual variables can be measured by how 
often they occur across multiple models

● “Model averaging” - average the coefficients across all retained 
models to obtain estimates of effects



  

Interpreting the predictors

● The Method of Support is based on assessing support for models
● But, we understand the results in terms of variables
● When there is a single, clearly best-supported model we interpret 

the variables in the usual way
– Slopes/standardized coefficients
– Partial effect sizes

● When there isn’t a clearly best-supported model, we can sum the 
weights of models variables appear in to get a measure of 
importance for predictors



  

Evidence of the importance of Min, Max, and 
Precip



  

Post-hoc procedures

● If you apply the method to an ANOVA model, you would know 
which model is best supported, but would not know which 
groups are different

● Could give up and resort to Tukey tests
● Or, a model selection-based approach would be to:

– Estimates of means and confidence intervals
– Compare models with merged factor levels



  

Example: merged factor levels

● Approach as: what are the homogeneous subsets?
● The model with groupings that are best supported by the data is 

interpreted
● No need to test all possible – can order them by smallest to 

largest mean, and compare possible ordered groupings
● Example of sleep cycle data



  

Circadian cycles

● When you travel, you get jet lag – sleepy at the wrong time
● Exposure to the light/dark cycle at your destination eventually restores your 

normal sleep cycle
● One study found that shining light on the back of the knee could help shift 

circadian rhythms
● Controversial result (no reason for it to be true)
● Re-tested, comparing the amount of shift in 

circadian rhythm for: 
– Untreated controls
– Light shined on the backs of knees
– Light shined in eyes



  

The data

● Use the following groupings for light treatments:
– Control, Knee, Eye (unchanged treatment column)
– Control, Knee&Eye
– Control&Knee, Eye
– Control&Eye, Knee
– Control&Knee&Eye (intercept only)

● Run one model for each of these 
groupings

● Interpret the best supported model



  

Re-coding the data
● Predictor columns represent 

different possible models
● Treatment is model c.k.e (all 

three different)
● cke (no differences) is an 

“intercept only” model = no 
groups, just likelihood of 
grand mean given the data 
(no column needed)



  

C,K,E: ΔAICc = 3.01 C&K,E: ΔAICc = 0

C,K&E: ΔAICc = 9.62 C&E,K: ΔAICc = 10.50

c k

e

c&k c&k

e

c k&e

k&e

c&e k

c&e

Intercept only: ΔAICc = 9.82



  

What’s the model?

N
O

 F
lu

x


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 39

