Biol 531 — Advanced topics in
biological data analysis

Linear Models

* Course content
* Review of hypothesis testing, t-tests



Statistical survival skills for biologists

* This class will focus on analytical skills that are needed by
professional biologists

* To function as a biological scientist, you need to be able to:

- Design studies

- Analyze data

- Present results

— Interpret the literature



Study design

Focus on the logical construction of studies

Why do we use:
- Randomization?
— Control groups?

How do we get reliable experimental results in the face of:

- Confounded variables?

- Random variation in outcomes?

How do fields that are unable to routinely use manipulative experiments make
progress?

— How can we use our understanding of experimental design to improve non-
manipulative studies?



Analyze data

* Graphical, descriptive analysis — looking at your data

- What are the major patterns?
- How are the data distributed? Are there outliers?

* Evaluating hypotheses about the structure in your data
- How do you match an analytical technique to the question you are
asking?
- How do you reach scientific conclusions based on statistical
analytical results?



Interpreting the literature

* Become a critical consumer of the primary literature
- What statistical techniques are being used, and why?
- How to interpret presented results? Is the p-value enough?

- Which are alternative approaches to the same analysis, and which
are addressing different questions?

* You should know what authors assume you will know, and thus
don’t bother explaining to you

e Some examples...



Cell/molecular bio

The human splicing code reveals
new insights into the genetic
determinants of disease
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that have differing SNPs (13). When we exam-
ined 99 exons that exhibited a significant differ-
ence in RNA-seq-assessed ¥ between pairs of
individuals and whose predicted difference in
¥ was above a noise threshold, we found that
our technique correctly predicted the direction
of change in 73% of cases (P = 3.5 x 107°, bi-
nomial test).

If they don’t explain, you’re expected to know already

We found that intronic disease SNVs that are
more than 30 nt from any splice site are 9.0
times as likely to disrupt splicing regulation
relative to common SNPs in the same region
(P = 5.1 x 107%%, two-sample ¢ test, n = 1639 and
n = 24.535). Within exons, synonymous disease
SNVs are on average 9.3 times as likely as syn-
onymous SNPs to disrupt splicing regulation
(P = 8.0 x 107", two-sample ¢ test, n = 2652
and n = 4510).

Missense SNVs have previously been exam-
ined mainly in the context of how they alter
protein function (7). Our method enables the
exploration of their effects on splicing regula-
tion. We found that missense disease SNVs are
not more likely to disrupt splicing than missense
SNPs (P = 0.22, two-sample £ test, n = 58,918 and
n = 2081), which contradicts previously published
evidence that they do (P = 0.05) (9). However,
when we examined 789 and 1757 missense dis-
ease SNVs that minimally and maximally alter
protein function as indicated by Condel (2I)
analysis, we found that SNVs that minimally
alter protein function are on average 5.6 times
as likely to disrupt splicing regulation (P = 4.5 x
107", two-sample ¢ test), elucidating a “disease
by misregulation” mechanism (13).

We found that within introns, the regulatory
scores of 457 SNPs that were implicated in genome-
wide association studies (GWAS) and that map
to regulatory regions (22) are quite similar to non-
GWAS SNPs (P = 0.27, KS test, n = 262,804),
whereas the scores of disease SNVs are signifi-
cantly higher (P <1 x 10720, KS test, 71.2%, n =
280.,638). Fewer than 5% of GWAS SNPs are esti-



Ecology

Eisenia density and macroalgal community structure

Owver the course of this study (2004-2005), Eisenia
densities at the study site were significantly higher in
summer (up to 17 individuals/m”) compared to winter
seasons (up to 11 individuals/m® [two-way, Model III
ANOVA, F,, = 191.500, P = 0.046; Fig. 2A]). This
pattern did not vary across years (ANOVA, F| 156 =
1.684, P = 0.196) or between seasons and years
(ANOVA, F, 5= 0.015, P =0.903).

Foliose algal community structure differed with
respect to canopy, season. and year (Fig. 2B, C); see
Appendix B for complete ANOVA results for each
macroalgal group. Foliose red algae was highest in
percent cover in the canopy (12-16%) compared to the
canopy-free (2-7%) zone for all of 2004 and summer
2005, but had a similar percent cover between the two

Kelp canopy facilitates understory algal assemblage via competitive

habitats in winter 2005 (5-7% [three-way Model III
ANOVA, canopy X year; P < 0.001; Fig. 2B]). In
contrast, brown algal cover was up to six times higher in
the canopy-free compared to the canopy zone across all
seasons and years sampled (canopy: P=10.019; Fig. 2C).
Articulated coralline cover was overall higher in winter
in 2005 (38-40%) than in summer (21-25% [season X
year; P = 0.03]). However, in 2004, articulated coralline
cover was higher in the canopy zone each season
(canopy X year; P=0.028; Fig. 2D). Crustose corallines
were nearly 2.5% greater in abundance in the canopy-free
compared to the canopy zone in winter of 2004, but
showed similar abundances in both habitats in winter
2005. In the summer seasons, however, percent cover
was higher under the Eisenia canopy (39-40%) com-
pared to the canopy-free zone (25-26%) in both 2004
and 2005 (canopy X season X year; P=0.004; Fig. 2E).

These results indicate that although both habitats
have high abundances of articulated and crustose
coralline algae, they differ in foliose algal species. The
understory assemblage is dominated by foliose red algae
with extremely low abundances of brown algae. In
mmmbenet tha accammblomcs e the sseme l'-‘ree Zone iS

ppendix A;

release during early stages of seeendary succession
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Physiology

Effect of Nutritional Status on the Osmoregulation
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Introduction

Green sturgeon (Aci;

Table 1: Growth performance, body proximate composition, and plasma metabolites in juvenile green sturgeon following a 4-wk

feed restriction trial

OFR group
Response variable 12.5% 25% 50% 100%
Growth performance=
Final body weight (g) 180.0 £ 1.9 2028 £ 21" 2481 + 3.1° 35315 £ 2.7
SGR (% Bw d7) —.40 £ 0° D2 % g° 78 £ 0" 189 = o~
Feed efficiency (%) =2062 + 10.1° 45 + 748 96.9 + 284 1164 + 224
Condition factor 31 + 0 g v B Y . ri ) e 38 + 0
Body proximate composition:®
Moisture (%) 868 £ 3* 853 % 348 843 £ 2°® 819 + g€
Crude protein (%) b e 2 b 109 £ 1* 1.2+ 1* 121 = 4*
Crude lipids (%) 14 + 1® e g i s 16 + 28 36 £ 4
Body energy (k] g~')* 28+ 1° i [ 0 ey 34 + 18 43+ 3
Plasma metabolites:*
Glucose (mg dL™') 663 + 1.8% 56.7 + 3® 96.7 + 1.8*8 1163 + 9.24
Lactate (mg dL~') 83 = .74 181 * 6 218 £ 6.1* 323 = 9.6
Triglycerides (mg dL™') 113 + 1.8® 251 £ 5.0° 1710 = z1.6* 2319 £ 28.8°
Total protein (g L™) 88 + 1I° 103 + 2o 123420 161 = 1.2+

Maote. Values are means = SE. Means with different superscript capital letters in each row are significantdy different by the Tukey HED test based on 2 one-way

ANOVA (P < 0.05). BW = body weight; OFR = optimal feeding rate; SGR = specific growth rate,
‘N = 3 (three replicate tanks per feeding treatrent). Average initial body weight was 202 + 15 g

"W = 3 (three fish per replicate tank were pooled, and the three replicate tanks were averaged). Initial body proximate composition was 83.7% = 0.1%

moisture, 11.6% + 0.2% crude protein, and 2.0% = 0.3% crode lipids.

“‘Body energy was calculated as 4.18 = [5.65 » (% crude protein » 1007) + 9.4 = (% crude lipids = 1007') + 4.23 » (% nitrogen-free extract = 1007)].

N = 3 (means of three fish in each replicate tank were averaged).



Some exotic, new developments...

How do animals optimize the size—number trade-off when aging?
II“lSightS fl‘GIT’l l‘CpTDdUCTi‘L'E sSenescence pattcrns in marmots
VErRanE BErGER, JEAN-FrANCOIS LEMAITRE, JEAN-MIcHEL GalLLARD, aND AurELE CoHas!

Université de Lyon, F-600600, Lyan; Université Lyan 1; CNRS, UMRS558, Laboratoire de Bioméirie er Biologie Evolutive,
F69622, Villeurbanme, Framce

Trait Model k| AIC |AAIC|AICwW
Offspring mass (N =549} Base 25|0058.02] 4.19 | 0.06
Base + Age  (26/6055.47| 1.65 | 0.22
Base + Age* |27|0057.26| 3.43 | 0.09
Base + T(10) |27|6058.18| 4.35 | 0.06
Base + F(age)|37|6053.83| 0.00 | 0.49
Base + S(age) |26|0057.47| 3.65 | 0.08




Why statistical analysis?

* Did you really get into Biology to study statistics?

* It's everywhere, can't avoid it, assumed you know it...why,
exactly?



How do we know what we know?

In science, we base what we know on evidence

Experiments are the workhorse, the source of much of our evidence
But, we work with biological material, which is variable

This causes experimental uncertainty

Example — conduct an experiment testing the effectiveness of a fertilizer
for growing crops

— Two groups (fertilizer treated and
control)

- Which gives more yield?
Some hypothetical data (quick demo...)




What we learned from the demo...

 Even if there is no effect of treatment,

two samples can have means that Yleid.of crops
look quite different .

* |dentical sample means almost never I
happen, even if there is no difference e .
at the population level = 6 ' +

- If there is a difference at the > t '

80

population level, the samples of data
will start looking different consistently
(more convincingly when the
difference is large)

Al Caontrol Fertilized



Random differences can look real

Simulated data sets were randomly selected from a single
normal distribution with a mean of 100 kg

- Randomly selected ten data points and called them “treatment”
- Randomly selected ten other data points and called them “control”

We only know this because | made up the data

Normally, we don’t know whether the experimental outcome is a
real biological effect, or just random sampling

So, what do we do to avoid being fooled by chance differences?



Drawing conclusions in the face of uncertainty

 We can’t know for sure if experimental differences are real or
just random sampling variation

* But, we can estimate the sizes of differences between groups to
expect from random sampling

* We can then ask whether our observed differences are big
compared to what we expect to get from random sampling

 How much variation to expect from random sampling? A
simulation...



What we learned from the simulation

* Randomly sampling two groups from the same Distribution of differences between means

popUIation many times results in: mean of diffs. = -0.05, s of diffs. = 4.53
- Bell-shaped distribution of differences between T distribution o
means '
d 800 |
- Many small, near zero differences , 03 2
- The bigger the difference the less likely it is to o 900 | \ g
occur by chance 3 [ | 0.2 £
: f ke . U400 0
- The larger the sample size the less variability in : S
differences occurs 200 , h 01 &
- Any given difference is likely to be different from y (
zero, but on average the differnences are zero i 0 0 0

- The Student’s t-distribution is a good mathematical

model for this sampling distribution of differences Pifference



Standard error = measure of spread in the
sampling distribution

We measured standard error in the simulation by generating thousands
of random differences and calculating their standard deviation

This isn’t possible in the real world — we do experiments once, not
thousands of times

Fortunately, there is a simple relationship between the standard
deviatiorz/of the data and the standard error of the sampling distribution
— Sz = s/\n

Both the standard deviation of the data (s) and the sample size (n) are
known for a single sample, so we can estimate the standard error from
a single sample of data



Standard error of a difference

But, we have difference between two means, not a single mean

The standard error of a difference between 52 ] 52
means is calculated with: Sd'ff i contro + treatment
l
n control n treatment

This is a measure of how much random variation we expect, if there is no difference in
means for the control and treatment populations

We can compare the amount of difference between our treatment and control group
sample means

- If the amount of difference between the groups is big comlpared to this se, we have confidence that
the treatment had an effect (the difference is probably not random)

- If the amount of difference is not big compared to this se, it could easily just be random variation,
and not a real treatment effect



For example...

2 2
- X=101.2 Sdiff:\/lo.s +93 A

e Control:
- s=10.5
- n=10

* Treatment:
- X=107.0
7S )
- n=10

10 10

Difference between
means is 5.8, which is

5.8/4.2 = 1.38 standard
errors

Is this a lot?

Yield (kg)

140

120

100

80

60

Yield of crops
(diff. btwn. means = -5.83)

Contraol Fertilized



Using the t-distribution as a model of random
sampling

 \We can use the t-distribution to tell us if 1.38 standard errors

between the means would happen commonly, or uncommonly,
due to random sampling

* Back to the web pages...



What we learned from the t-distribution app

e With our n = 10, df = 8, 95% of
random differences fall within
2.26 standard errors of zero

0.4

0.3

* |f we take 2.26 as a benchmark
of typical sizes for random
differences, our difference of
1.38 s.e. is not very big — we Sy
can’t be confident it's a real
difference

0.2

Probability density

0.1

0 5

t-value



Hypothesis testing

This general approach is often formalized into a null hypothesis significance test

Start by hypothesizing no difference between population means (i.e. no effect of
treatment, the null hypothesis)

- Symbolically, Ho: Peontrol = Mtreatment

Calculate the amount of difference between the groups observed in the sample means,
as a test statistic

- towsenved = difference/(standard error of difference)

Use the t-distribution as a sampling distribution to calculate the probability of obtaining
the difference observed by chance, if the null is true (the p-value)

If the p-value is < 0.05, reject the null — conclude that there probably is a difference
between population means

If the p-value is > 0.05, retain the null — conclude that the population means are the
same (or, rather, that your data do not give you enough evidence to conclude otherwise)



Our example as a t-test

Our observed t-value of 1.38
above or below the mean e
difference of 0 encompasses 15%
of the random difference expected

Or, p=0.15
Since p > 0.05, we retain the null

Probability density

=

This is a two-tailed test — random 00- . |
differences as big as we observed, o P vae
but in either direction, are included



Errors in hypothesis testing

 The benchmark we compare p against is our alpha level

- Usually set to 0.05

- Since p < 0.05 causes us to reject, this is the probability of a random outcome large
enough to cause us to reject the null

- ltis thus an error rate — if we get a random difference that we conclude is non-random,
this is a Type | error = a false positive

* We can also get differences that are real, but are so small they could easily have

been random

- When this happens, p > 0.05, even though the difference is real

— The probability of this is beta, and it is the probability of a Type Il error = a false negative

- The probability of detecting a difference when there is one there to detect is 1-3, and is
called statistical power



Possible outcomes of our test — types of

errors
Reject the null No error Type | error
Retain the null Type Il error No error

Determined by size of difference, sampleJ

size, sampling variation (p errors) Set by you

(a-level)



Effects of sample size on error

Error can never be eliminated, but we do have some control over the
chances of an error

- Type | error (a) is set by you when you decide the p-value that will indicate a
positive result (i.e. a rejected null)

- Type Il error (B) isn't set, but can be minimized with large sample size and good
experimental design

For a particular sample size, they trade off
- Lower chance of Type | error — higher chance of Type Il
— Lower chance of Type |l — higher chance of Type |

Only way to reduce Type Il without increasing Type | is to increase sample
size (or collect data more carefully)

Another online illustration...



Types of t-tests — matching analysis to design

Design

Two groups
compared

One group compared
to a hypothetical
mean

Measurements of
paired samples

Example t-test type

Treatment vs. control 2-sample t-test

Mean body 1-sample t-test
temperature of the
class vs. 98.6

Right bicep Paired t-test
circumference vs. left
bicep circumference



One-sample designs

* Asingle set of measured data is collected, and a sample mean is
calculated

* This mean is compared against a number, representing the
hypothetical mean for the population

- Simple example would by something like normal body temp, 98.6° (the
example you will use for the review exercise)

— Null hypothesis is Ho: 1 = 98.6, if you reject the null conclude populaton
body temp is not 98.6

* Not very common, because we don’t usually know what the
population parameter should be, and need to estimate it from data



Paired designs

* Two-sample design, but the data points are not independent between the groups
- Usually because they are two different measures of the same subjects (before/after

treatment, right/left side of body, etc.)

* Problem is that variation between the experimental subjects can obscure small,
consistent differences

e Solution is to use the difference between the two sets of measurements

Example: measure uptake of CO. in a set of plants grown in chambers with low
atmospheric CO,, and then in chambers with high atmospheric CO, (the example you
will use for the review assignment)

Compare mean of differences against 0 (Ho: pgir = 0) with a one-sample t-test
If the null is rejected conclude that the differences are not 0 at the population level



Assumptions of tests

« Statistical assumptions are the conditions that need to be true for the test to
work as expected

* General statistical assumptions

— Observations are randomly sampled
— Observations are independent

* “Parametric” assumptions (needed for the t-distribution to be an accurate
model of random sampling)
- Variances between the groups are equal (two-sample t-tests only...why?)
* A.k.a. homogeneity of variances, homoscedasticity
— The populations are normally distributed (differences are normal in a paired t)



Violating the HOV assumption

Big differences
between black
and red will
happen more
commonly

Relative frequency

No difference in
mean

Plant height

Note: there are ways to treat lack of homogeneity of variances...
more later



Violating the normal population assumption

600

Relative frequency
0 40 80 120

0

I

(S| (| (Tl (P (] F] (| I | | | 1
g 1 2 3 4 &5 B T c 1 2 3 4

0 200

Relative frequency

X X

We can test for this, and if the data are non-normal we may treat the
data (transformations), or use a different type of test
(nonparametrics) — more later



Take-home: the purpose of hypothesis testing

* Random sampling can produce results that look like real
experimental effects

* You can never be completely certain that your results are not
just random sampling variation

* But, you can calculate the probability that your results are
random sampling variation, and draw conclusions in light of this

uncertainty
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