
  

Post-hocs and contrasts



  

Example: cost of selection in fruit flies

● Experiment to test for a fitness cost of selection
● Three different treatments

– Not selected (NS)
– Selected for resistance to pesticide (RS)
– Selected for susceptibility to pesticide (SS)

● Measure reproductive output for each (fecundity)
● Question: is fecundity different between treatments?

– If any kind of selection is costly, which will be different?
– If the direction of selection matters, which will be different?



  

ANOVA doesn’t tell us what we want to know

● ANOVA gives an omnibus test of differences among the levels, 
but not specific about which means differ

● We need to know which means are different to interpret the 
results

● This we get from post-hoc procedures, which are done after a 
significant ANOVA

● Why do we put up with this?



  

The multiple testing problem

● Our α-level is an error rate (usually use a nominal α = 0.05)
– A single hypothesis test has a 5% chance of a false positive if the null is true

● With two tests we only avoid Type I error if we don’t get one on the first test 
AND don’t get one on the second, or (1-0.05)(1-0.05)

● Probability that at least one of two tests is a false positive is

1 – (1-0.05)(1-0.05) = 1 – (1-0.05)
2
 = 0.0975

● Probability that at least one of k tests is a false positive is

1 – (1 – α)k = 1 – (1 – 0.05)
k



  

More groups, 
more comparisons, 

bigger problem

Groups Comparisons P(False positive)

2 1 0.05

3 3 0.14

4 6 0.26

5 10 0.40

6 15 0.54

7 21 0.66

8 28 0.76

9 36 0.84

10 45 0.90

Essential to address this problem when comparisons are not independent



  

ANOVA’s two-step is designed to control 
Type I error rate

● The first step establishes that there is evidence for differences 
between at least two of the groups

● If (and only if) this omnibus test is significant we move on to the 
post-hocs

● The post-hocs adjust the amount of difference required to be 
significant to maintain a 5% family-wise error rate



  

The data

Response: fecundity

          Df Sum Sq Mean Sq F value    Pr(>F)    

strain     2 1362.2  681.11  8.6657 0.0004244

Residuals 72 5659.0   78.60 

We have three comparisons to make: NS vs. RS, 
NS vs. SS, RS vs. SS

Making comparisons between all possible pairs of 
means is usually done with Tukey post-hocs



  

Tukey-Kramer HSD

● Uses the “studentized range” distribution instead of t for critical 
values, p-values
– Studentized range is flatter than t - takes a greater difference between 

means to be significant than t
– Gets flatter still as the number of comparisons increases – amount of 

difference required gets bigger the more groups are compared
– For example, Tukey's requires 2.39 se between means, t-test requires 2.01 

se for a pair of means to be significantly different for the fly data

● Can be used with unequal sample sizes between groups
● Since the amount of difference needed is adjusted we still consider 

p < 0.05 to be significant for each comparison



  

Tukey's comparisons

         Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = fecundity ~ strain, data = fruitfly.df)

Linear Hypotheses:

             Estimate Std. Error t value Pr(>|t|)    

RS - NS == 0   -8.116      2.508  -3.237 0.005105 ** 

SS - NS == 0   -9.744      2.508  -3.886 0.000662 ***

SS - RS == 0   -1.628      2.508  -0.649 0.793406    

Implemented by using the 
t-distribution, but with 
lower d.f.



  

Post-hocs for fewer than all possible 
comparisons

● More tests → bigger adjustment to avoid Type I error → more 
differences missed → higher Type II error (and lower power)

● If you only actually care about a subset of the possible 
comparisons, better to only test the ones you care about

● For example:
– Dunnett's method compares each mean to a single comparison 

group (usually the control)
– Scheffe's method can compare any combinations of group means 

(e.g. RS and SS vs NS)



  

Dunnett's method
Compare each group against control

         Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = fecundity ~ strain, data = fruitfly.df)

Linear Hypotheses:

             Estimate Std. Error t value Pr(>|t|)    

RS - NS == 0   -8.116      2.508  -3.237 0.003543 ** 

SS - NS == 0   -9.744      2.508  -3.886 0.000441 ***

Omitting the SS – RS 
comparison makes the 
p-values smaller



  

Orthogonal contrast

● We need to use post-hocs following ANOVA because the comparisons 
are not independent
– One group that by chance is unusually large or small can result in more than 

one false positive

● But, we don’t adjust our alpha level for analysis of completely different 
data sets
– We don’t worry about a career-wise Type I error rate
– p-values for different experiments aren’t adjusted

● If we can make comparisons within a data set that are independent then 
we don’t need to adjust alpha

● How do we use orthogonal contrasts?



  

The contrast matrix

● Numbers in the matrix are weights – define the comparisons made
– 0 indicates the mean isn’t included in the comparison
– Negative weights are compared 

with positive

● Contrast 1 compares RS to NS
● Contrast 2 compares SS to NS
● To be orthogonal, these weights 

have to:
– Sum to zero for each contrast 

(down the columns)
– Sums of products of any two contrasts has to be zero (multiply across columns, sum 

products)

● This set defines the Dunnett’s comparisons – are they orthgonal?



  

Other possibility...

● Contrast 1 compares control 
(NS) with mean of the two 
selected lines

● Contrast 2 compares selected 
lines against each other

● Are Contrast 1 and Contrast 2 orthogonal?
● This is an example of Helmert coding – each level against the 

mean of the following levels



  

Results

● Intercept is the grand 
mean

● First coeff. Is the 
difference between 
NS and mean of 
remaining two lines

● Second is the difference between second and third selected lines
● Independent – can interpret the p-values at the 0.05 level without fear of 

increasing Type I error
● What isn’t being compared?
● Is this what we want to know? 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  28.5733     0.9934  28.762  < 2e-16

linecont1    -3.7467     1.4049  -2.667  0.00945 

linecont2     0.4600     1.2167   0.378  0.70649



  

Advantages of orthogonal contrasts

● The most statistically powerful method for comparing means 
(no need to adjust for multiple comparisons)

● Can be interpreted even if the omnibus ANOVA is not significant
● Can test hypotheses about combinations of groups (two 

selected vs. single non-selected group)



  

Disadvantages of orthogonal contrasts

● Sample size has to be equal between groups = balanced 
design

● Not all comparisons can be made orthogonal
– For k groups there are at most k-1 independent contrasts
– Some sets of comparisons aren’t orthogonal, even if there are only k-

1 of them

● If the question you want to ask can’t be answered with 
orthogonal contrasts, better off with post-hocs



  

Example with ordinal levels: physiological 
changes during development

● Japanese Conger eel
● Five stages of metamorphosis 

from larvae to adult identified – 
stage is ordinal

● Four animals at each stage 
selected for measurement of 
several variables, including 
percent body water, hyaluronan 
(HA), and neutral sugar (NS)



  

Contrasts with ordinal 
categories

● Developmental stage is a 
categorical variable with natural 
ordering (it is an ordinal 
categorical variable)

● The questions we ask should 
account for this ordering

● For example, we could use 
contrasts that compare each level 
to the means of later levels



  

Sequential 
contrasts

● This set of 
contrasts 
compares each 
level to the 
mean of the 
levels that follow

● Each level is 
different from 
the means of 
subsequent 
levels for HA

Contrast 
1

Contrast 
2

Contrast 
3

Contrast 
4

Stage 1 4 0 0 0

Stage 2 -1 3 0 0

Stage 3 -1 -1 2 0

Stage 4 -1 -1 -1 1

Stage 5 -1 -1 -1 -1

Coefficients:

                   Estimate Std. Error t value Pr(>|t|)    

(Intercept)         395.938     16.261  24.349 1.79e-13 ***

Stage.seqContrast1  -41.966      8.131  -5.162 0.000116 ***

Stage.seqContrast2  -93.896     10.497  -8.945 2.12e-07 ***

Stage.seqContrast3  -72.813     14.844  -4.905 0.000190 ***

Stage.seqContrast4  -83.705     25.711  -3.256 0.005322 ** 



  

Pattern of change across the 
levels

● Instead of focusing on statistically 
significant differences in means, 
we could ask about the pattern of 
change

● Like a linear regression, but using 
the ordinal levels instead of a 
numeric predictor

● Done with orthogonal polynomial 
contrasts



  

Orthogonal polynomial contrasts

● Assign numeric weights to 
each developmental stage
– Weights describe a pattern of 

change
– With five stages can have up to 

a fourth degree polynomial

● The numbers used as weights 
are arbitrary, but have to meet 
orthogonality criteria (sum to 
0, sums of products are 0)

Linear Quadratic Cubic 4th 
degree

Stage 1 -0.63 0.53 -0.32 0.12

Stage 2 -0.32 -0.27 0.63 -0.48

Stage 3 0 -0.53 0 0.72

Stage 4 0.32 -0.27 -0.63 -0.48

Stage 5 0.63 0.53 0.32 0.12



  

Which variable shows a linear trend?

Which shows a quadratic trend?



  

Results: HACall:

lm(formula = HA ~ Stage, data = eels)

Residuals:

    Min      1Q  Median      3Q     Max 

-116.94  -43.12   12.68   30.44  122.39 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   395.94      16.26  24.349 1.79e-13 ***

Stage.L      -406.41      36.36 -11.177 1.13e-08 ***

Stage.Q      -102.45      36.36  -2.817   0.0130 *  

Stage.C        85.11      36.36   2.341   0.0335 *  

Stage^4       -62.75      36.36  -1.726   0.1049    

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 72.72 on 15 degrees of freedom

Multiple R-squared:  0.904,     Adjusted R-squared:  0.8785 

F-statistic: 35.33 on 4 and 15 DF,  p-value: 1.805e-07



  

Relating the weights to the effects in the data set

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Linear -0.63 -0.32 0.00 0.32 0.63

Quadratic 0.53 -0.27 -0.53 -0.27 0.53

Cubic -0.32 0.63 0.00 -0.63 0.32

4th degree 0.12 -0.48 0.72 -0.48 0.12

Orthogonal polynomial weights                           x            Coefficients

x        -406.41

x        -102.45  

x          85.11  

x         -62.75    



  

Predicting mean HA
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Linear -0.63 -0.32 0.00 0.32 0.63

Quadratic 0.53 -0.27 -0.53 -0.27 0.53

Cubic -0.32 0.63 0.00 -0.63 0.32

4th degree 0.12 -0.48 0.72 -0.48 0.12

Ex: Stage 1 HA, linear trend

Start with intercept, add 
scaled weights for the 
linear trend(coefficients 
multiplied by weights)

Stage 1: 395.94 – 406.41 (-0.63) = 651.97

Stage 2: 395.94 – 406.41 (-0.32) = 525.99

Stage 3: 395.94 – 406.41 (0) = 395.94

Stage 4: 395.94 – 406.41 (0.32) = 265.89

Stage 5: 395.94 – 406.41 (0.63) = 139.90

Linear

p < 0.001

HA = 395.94 - 406.41 (linear)



  

Adding the quadratic trend

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Linear -0.63 -0.32 0.00 0.32 0.63

Quadratic 0.53 -0.27 -0.53 -0.27 0.53

Cubic -0.32 0.63 0.00 -0.63 0.32

4th degree 0.12 -0.48 0.72 -0.48 0.12

Start with linear trend, add 
the quadratic scaled 
weights (quadratic 
coefficient multiplied 
by the weights):

Stage 1: Intercept + Linear – 102.45 (0.53) =  597.67

Stage 2: Intercept + Linear – 102.45 (-0.27) = 553.67

Stage 3: Intercept + Linear – 102.45 (-0.53) = 450.24

Stage 4: Intercept + Linear – 102.45 (-0.27) = 293.55

Stage 5: Intercept + Linear – 102.45 (0.53) = 85.60



  

Linear

p < 0.001

Quadratic

p = 0.013

HA = 395.94 - 406.41 (linear) HA = 395.94 - 406.41 (linear)- 102.45 (quadratic)



  

Cubic trend

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Linear -0.63 -0.32 0.00 0.32 0.63

Quadratic 0.53 -0.27 -0.53 -0.27 0.53

Cubic -0.32 0.63 0.00 -0.63 0.32

4th degree 0.12 -0.48 0.72 -0.48 0.12

Start with the quadratic, 
and add the cubic 
scaled weights

Stage 1: Intercept + Linear + Quadratic + 85.11 (-0.32) = 570.44

Stage 2: Intercept + Linear + Quadratic + 85.11 (0.63) = 607.27

Stage 3: Intercept + Linear + Quadratic + 85.11 (0) = 450.24

Stage 4: Intercept + Linear + Quadratic + 85.11 (-0.63) = 239.93

Stage 5: Intercept + Linear + Quadratic + 85.11 (0.32) = 112.84



  

Linear

p < 0.001

Quadratic

p = 0.013

Cubic

p = 0.033

HA = 395.94 - 406.41 (linear) HA = 395.94 - 406.41 (linear)- 102.45 (quadratic)

HA = 395.94 - 406.41 (linear) - 102.45 (quadratic) 
+ 85.11 (cubic)



  

4th degree trend

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Linear -0.63 -0.32 0.00 0.32 0.63

Quadratic 0.53 -0.27 -0.53 -0.27 0.53

Cubic -0.32 0.63 0.00 -0.63 0.32

4th degree 0.12 -0.48 0.72 -0.48 0.12

Add the 4th degree scaled 
weights to the cubic trend

Stage 1: Intercept + Linear + Quadratic + Cubic - 62.75 (0.12) = 562.91

Stage 2: Intercept + Linear + Quadratic + Cubic - 62.75 (-0.48) = 637.39

Stage 3: Intercept + Linear + Quadratic + Cubic - 62.75 (0.72) = 405.06

Stage 4: Intercept + Linear + Quadratic + Cubic - 62.75 (-0.48) = 270.05

Stage 5: Intercept + Linear + Quadratic + Cubic - 62.75 (0.12) = 105.31

These perfectly match the group means



  

Linear

p < 0.001

Quadratic

p =  0.013

Cubic

p = 0.033

4th degree

p = 0.105

HA = 395.94 - 406.41 (linear) HA = 395.94 - 406.41 (linear)- 102.45 (quadratic)

HA = 395.94 - 406.41 (linear) - 102.45 (quadratic) 
+ 85.11 (cubic)

HA = 395.94 - 406.41 (linear) - 102.45 (quadratic) 
+ 85.11 (cubic) - 62.75 (4th degree)



  

Results: NSCall:

lm(formula = NS ~ Stage, data = eels)

Residuals:

    Min      1Q  Median      3Q     Max 

-3.2575 -1.0269  0.2263  0.7137  2.4450 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  10.9370     0.3763  29.067 1.33e-14 ***

Stage.L       9.9928     0.8413  11.877 4.98e-09 ***

Stage.Q       0.9501     0.8413   1.129    0.277    

Stage.C       0.8815     0.8413   1.048    0.311    

Stage^4      -1.1597     0.8413  -1.378    0.188    

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.683 on 15 degrees of freedom

Multiple R-squared:  0.9064,    Adjusted R-squared:  0.8815 

F-statistic: 36.33 on 4 and 15 DF,  p-value: 1.496e-07

Which trend is 
significant?



  

Results: WaterCall:

lm(formula = water ~ Stage, data = eels)

Residuals:

    Min      1Q  Median      3Q     Max 

-4.9475 -1.9519 -0.8325  1.8881  6.6650 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  86.7245     0.7913 109.600  < 2e-16 ***

Stage.L      -7.0131     1.7694  -3.964  0.00125 ** 

Stage.Q      -1.6243     1.7694  -0.918  0.37314    

Stage.C      -1.6507     1.7694  -0.933  0.36562    

Stage^4       1.0351     1.7694   0.585  0.56725    

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.539 on 15 degrees of freedom

Multiple R-squared:  0.5422,    Adjusted R-squared:  0.4201 

F-statistic: 4.442 on 4 and 15 DF,  p-value: 0.01745

Which trend is 
significant?



  

Protecting experiment-wise error rates outside of 
ANOVA

● There are other situations that generate more than one non-
independent p-value
– Multiple predictor variables
– Multiple response variables from the same subjects

● Post-hoc procedures only cover comparisons among levels of a 
single categorical predictor, don’t work with these

● Need to either:
– Adjust α
– Use model selection methods (more later)



  

Adjustments to α

● To achieve an experiment-wise α = 0.05 with 3 p-values, test 
each p-value at:

● Dunn-Šidák method

● Bonferroni

● Advantage: these can be applied to any procedure (e.g. which of 
the eel ANOVA’s would still be significant at 0.0167?)

α '=1− k√(1−α)=1− 3√1−0.05=0.0169

α '=α/ k =0.05 /3=0.0167



  

Eel analysis – three responses, same stages

Variable p Un-adjusted Bonferroni: 
0.0167

Dunn-Šidák: 
0.0169

HA 1.8e-7 Signif. Signif. Signif.

Water 0.0174 Signif. NS NS

NS 1.5e-7 Signif. Signif. Signif.

Bonferroni is always a little lower than Dunn-Šidák, and is thus more 
“conservative” = fewer significant differences will be found



  

The false discovery rate problem

● Exploratory data analysis is becoming more common
– Data mining
– Automated data collection on thousands of variables at once

● The number of “false discoveries” (Type I errors, false positives) 
may be huge
– Expect 5% of the p-values to give us Type I errors if the null is true
– With 1,000 p-values that's 50 false discoveries expected

● False discoveries waste time, money



  

Example: microarray analysis

● Microarrays express many, many genes 
(20,000 is not atypical)

● Expression measured by intensity of 
fluorescence on a chip

● Wish to separate those that are differentially 
expressed from those that are not
– Any that are differentially expressed will be studied further

● Initially, differential expression was based on “fold change” (i.e. 2 fold 
increase, 3 fold increase, etc.)

● Fold change is an arbitrary criteria, not grounded in probability – better 
methods needed



  

The usual approaches: rock and a hard place

20,000×0.05=1,000

Hard place: with no 
adjustment expect huge 
number of false positives

Rock: only very large differences will be significant

Bonferroni

Dunn-Šidák method

0.05
20,000

=0.0000025

1−20000√1−0.05=0.00000256

4.56



  

Benjamini and Hochberg's solution
● Calculate p-values for each gene (t-tests, ANOVA)
● Sort them from smallest to largest
● Test the smallest at the most stringent level
● Test successive p-values at increasingly less stringent level
● Specifically, for m tests, ordered from lowest to highest p-value, 

from k = 1 to m, and test at:

● E.g. test smallest p-value at α/m (Bonferroni), second at 2α/m, 
third at 3α/m, final (biggest) at mα/m = α.

Pk ≤
k
m





  

A BH FDR graph for simulated data

B-H adjusted

True positives, 
found to be diff. 
expressed

False positive

False negative

BH balances between excessive missed positives and excessive false positives, gives 
the lowest combination of false positives and false negatives

No adjustment

Bonferroni for all
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