Post-hocs and contrasts

COINCIDENCE

SCIENTISTS ...

Think

Example: cost of selection in fruit flies

- Experiment to test for a fitness cost of selection
- Three different treatments
 - Not selected (NS)
 - Selected for resistance to pesticide (RS)
 - Selected for susceptibility to pesticide (SS)
- Measure reproductive output for each (fecundity)
- Question: is fecundity different between treatments?
 - If any kind of selection is costly, which will be different?
 - If the direction of selection matters, which will be different?

ANOVA doesn't tell us what we want to know

- ANOVA gives an omnibus test of differences among the levels, but not specific about which means differ
- We need to know which means are different to interpret the results
- This we get from post-hoc procedures, which are done after a significant ANOVA
- Why do we put up with this?

The multiple testing problem

- Our α -level is an error rate (usually use a nominal $\alpha = 0.05$)
 - A single hypothesis test has a 5% chance of a false positive if the null is true
- With two tests we only avoid Type I error if we don't get one on the first test AND don't get one on the second, or (1-0.05)(1-0.05)
- Probability that at least one of two tests is a false positive is

$$1 - (1 - 0.05)(1 - 0.05) = 1 - (1 - 0.05)^2 = 0.0975$$

• Probability that at least one of k tests is a false positive is

$$1 - (1 - \alpha)^{k} = 1 - (1 - 0.05)^{k}$$

Groups	Comparisons	P(False positive)	Moro groups
2	1	0.05	wore groups,
3	3	0.14	more comparisons
4	6	0.26	higger problem
5	10	0.40	bigger problem
6	15	0.54	
7	21	0.66	
8	28	0.76	0.8 - 0.7 -
9	36	0.84	0.6 - 0.5 -
10	45	0.90	왕 0.4 - 편 0.3 -
			0.2 0.1 0 2 4 6 8 10 12 14 Number of groups

Essential to address this problem when comparisons are not independent

ANOVA's two-step is designed to control Type I error rate

- The first step establishes that there is evidence for differences between at least two of the groups
- If (and only if) this omnibus test is significant we move on to the post-hocs
- The post-hocs adjust the amount of difference required to be significant to maintain a 5% **family-wise** error rate

The data

 Response:
 fecundity

 Df Sum Sq Mean Sq F value
 Pr(>F)

 strain
 2 1362.2
 681.11
 8.6657
 0.0004244

 Residuals
 72 5659.0
 78.60
 78.60

We have three comparisons to make: NS vs. RS, NS vs. SS, RS vs. SS

Making comparisons between all possible pairs of means is usually done with Tukey post-hocs

Tukey-Kramer HSD

- Uses the "studentized range" distribution instead of t for critical values, p-values
 - Studentized range is flatter than t takes a greater difference between means to be significant than t
 - Gets flatter still as the number of comparisons increases amount of difference required gets bigger the more groups are compared
 - For example, Tukey's requires 2.39 se between means, t-test requires 2.01 se for a pair of means to be significantly different for the fly data
- Can be used with unequal sample sizes between groups
- Since the amount of difference needed is adjusted we still consider p < 0.05 to be significant for each comparison

Tukey's comparisons

95% family-wise confidence level

Implemented by using the t-distribution, but with lower d.f.

Simultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts Fit: aov(formula = fecundity ~ strain, data = fruitfly.df) Linear Hypotheses:

					Estimate	Std.	Error	t value	Pr(> t)	
RS	-	NS	==	0	-8.116		2.508	-3.237	0.005105	* *
SS	-	NS	==	0	-9.744		2.508	-3.886	0.000662	* * *
SS	-	RS	==	0	-1.628		2.508	-0.649	0.793406	

Post-hocs for fewer than all possible comparisons

- More tests → bigger adjustment to avoid Type I error → more differences missed → higher Type II error (and lower power)
- If you only actually care about a subset of the possible comparisons, better to only test the ones you care about
- For example:
 - Dunnett's method compares each mean to a single comparison group (usually the control)
 - Scheffe's method can compare any combinations of group means (e.g. RS and SS vs NS)

Dunnett's method Compare each group against control

Simultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Dunnett Contrasts Fit: aov(formula = fecundity ~ strain, data = fruitfly.df) Linear Hypotheses:

					Estimate	Std.	Error	t value	Pr(> t)	
RS	-	NS	==	0	-8.116		2.508	-3.237	0.003543	* *
SS	-	NS	==	0	-9.744		2.508	-3.886	0.000441	***

Omitting the SS – RS comparison makes the p-values smaller

Orthogonal contrast

- We need to use post-hocs following ANOVA because the comparisons are not independent
 - One group that by chance is unusually large or small can result in more than one false positive
- But, we don't adjust our alpha level for analysis of completely different data sets
 - We don't worry about a career-wise Type I error rate
 - p-values for different experiments aren't adjusted
- If we can make comparisons within a data set that are independent then we don't need to adjust alpha
- How do we use orthogonal contrasts?

The contrast matrix

- Numbers in the matrix are weights define the comparisons made
 - 0 indicates the mean isn't included in the comparison
 - Negative weights are compared with positive
- Contrast 1 compares RS to NS
- Contrast 2 compares SS to NS
- To be orthogonal, these weights have to:
 - Sum to zero for each contrast (down the columns)

	Contrast 1	Contrast 2
NS	-1	-1
RS	1	0
SS	0	1
22	0	

- Sums of products of any two contrasts has to be zero (multiply across columns, sum products)
- This set defines the Dunnett's comparisons are they orthgonal?

Other possibility...

- Contrast 1 compares control (NS) with mean of the two selected lines
- Contrast 2 compares selected lines against each other

	Contrast 1	Contrast 2
NS	-1	0
RS	0.5	-1
SS	0.5	1

- Are Contrast 1 and Contrast 2 orthogonal?
- This is an example of Helmert coding each level against the mean of the following levels

Results

- Intercept is the grand mean
- First coeff. Is the difference between NS and mean of remaining two lines

Coeft	ficie	nts:
COCT	TOTC	nts.

	Estimate	Std. Error	t value	Pr(> t)
Intercept)	28.5733	0.9934	28.762	< 2e-16
inecont1	-3.7467	1.4049	-2.667	0.00945
inecont2	0.4600	1.2167	0.378	0.70649
			つくびょう ひちょう ひちょう やうちょう	

- Second is the difference between second and third selected lines
- Independent can interpret the p-values at the 0.05 level without fear of increasing Type I error
- What isn't being compared?
- Is this what we want to know?

Advantages of orthogonal contrasts

- The most statistically powerful method for comparing means (no need to adjust for multiple comparisons)
- Can be interpreted even if the omnibus ANOVA is not significant
- Can test hypotheses about combinations of groups (two selected vs. single non-selected group)

Disadvantages of orthogonal contrasts

- Sample size has to be equal between groups = balanced design
- Not all comparisons can be made orthogonal
 - For k groups there are at most k-1 independent contrasts
 - Some sets of comparisons aren't orthogonal, even if there are only k-1 of them
- If the question you want to ask can't be answered with orthogonal contrasts, better off with post-hocs

Example with ordinal levels: physiological changes during development

- Japanese Conger eel
- Five stages of metamorphosis from larvae to adult identified – stage is ordinal
- Four animals at each stage selected for measurement of several variables, including percent body water, hyaluronan (HA), and neutral sugar (NS)

Contrasts with ordinal categories

- Developmental stage is a categorical variable with natural ordering (it is an ordinal categorical variable)
- The questions we ask should account for this ordering
- For example, we could use contrasts that compare each level to the means of later levels

Sequential contrasts

- This set of contrasts compares each level to the mean of the levels that follow
- Each level is different from the means of subsequent solution is levels for HA

インサント・イント ふくう ふくうく ひとうしょう	ワインチョン ケリント ひろう ちょうやい	ひき びんてんかい たいわ おいだいしん たいしょ	とうがんく ふとうふくりつき ひょくひょくしんざい	MARCIAN CONTRACTOR STOCK
	Contrast 1	Contrast 2	Contrast 3	Contrast 4
Stage 1	4	0	0	0
Stage 2	-1	3	0	0
Stage 3	-1	-1	2	0
Stage 4	-1	-1	-1	1
Stage 5	-1	-1	-1	-1

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	395.938	16.261	24.349	1.79e-13	***
Stage.seqContrast1	-41.966	8.131	-5.162	0.000116	***
Stage.seqContrast2	-93.896	10.497	-8.945	2.12e-07	***
Stage.seqContrast3	-72.813	14.844	-4.905	0.000190	***
Stage.seqContrast4	-83.705	25.711	-3.256	0.005322	**

Pattern of change across the levels

- Instead of focusing on statistically significant differences in means, we could ask about the pattern of change
- Like a linear regression, but using the ordinal levels instead of a numeric predictor
- Done with orthogonal polynomial contrasts

Orthogonal polynomial contrasts

- Assign numeric weights to each developmental stage
 - Weights describe a pattern of change
 - With five stages can have up to a fourth degree polynomial
- The numbers used as weights are arbitrary, but have to meet orthogonality criteria (sum to 0, sums of products are 0)

	Linear	Quadratic	Cubic	4th degree
Stage 1	-0.63	0.53	-0.32	0.12
Stage 2	-0.32	-0.27	0.63	-0.48
Stage 3	0	-0.53	0	0.72
Stage 4	0.32	-0.27	-0.63	-0.48
Stage 5	0.63	0.53	0.32	0.12

Which variable shows a linear trend? Which shows a quadratic trend?

Call:

224

lm(formula = HA ~ Stage, data = eels)
Residuals:

Min 1Q Median 3Q Max -116.94 -43.12 12.68 30.44 122.39 Coefficients:

	Estimate Std.	Error	t value	Pr(> t)	
(Intercept)	395.94	16.26	24.349	1.79e-13	* * *
Stage.L	-406.41	36.36	-11.177	1.13e-08	* * *
Stage.Q	-102.45	36.36	-2.817	0.0130	*
Stage.C	85.11	36.36	2.341	0.0335	*
Stage^4	-62.75	36.36	-1.726	0.1049	

Results: HA

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 72.72 on 15 degrees of freedom Multiple R-squared: 0.904, Adjusted R-squared: 0.8785 F-statistic: 35.33 on 4 and 15 DF, p-value: 1.805e-07

Relating the weights to the effects in the data set

Orthogonal polynomial weights

Coefficients

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Linear	-0.63	-0.32	0.00	0.32	0.63
Quadratic	0.53	-0.27	-0.53	-0.27	0.53
Cubic	-0.32	0.63	0.00	-0.63	0.32
4th degree	0.12	-0.48	0.72	-0.48	0.12

X

Predicting mean HA

Ex: Stage 1 HA, linear trend

Start with intercept, add scaled weights for the linear trend(coefficients multiplied by weights)

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Linear	-0.63	-0.32	0.00	0.32	0.63
Quadratic	0.53	-0.27	-0.53	-0.27	0.53
Cubic	-0.32	0.63	0.00	-0.63	0.32
4th degree	0.12	-0.48	0.72	-0.48	0.12

Stage 1: 395.94 - 406.41 (-0.63) = 651.97Stage 2: 395.94 - 406.41 (-0.32) = 525.99Stage 3: 395.94 - 406.41 (0) = 395.94Stage 4: 395.94 - 406.41 (0.32) = 265.89Stage 5: 395.94 - 406.41 (0.63) = 139.90

Adding the quadratic trend

Start with linear trend, add the quadratic scaled weights (quadratic coefficient multiplied by the weights):

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Linear	-0.63	-0.32	0.00	0.32	0.63
Quadratic	0.53	-0.27	-0.53	-0.27	0.53
Cubic	-0.32	0.63	0.00	-0.63	0.32
4th degree	0.12	-0.48	0.72	-0.48	0.12

Stage 1: Intercept + Linear - 102.45(0.53) = 597.67Stage 2: Intercept + Linear - 102.45(-0.27) = 553.67Stage 3: Intercept + Linear - 102.45(-0.53) = 450.24Stage 4: Intercept + Linear - 102.45(-0.27) = 293.55Stage 5: Intercept + Linear - 102.45(0.53) = 85.60

HA = 395.94 - 406.41 (linear)- 102.45 (quadratic)

Cubic trend

Start with the quadratic, and add the cubic scaled weights

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Linear	-0.63	-0.32	0.00	0.32	0.63
Quadratic	0.53	-0.27	-0.53	-0.27	0.53
Cubic	-0.32	0.63	0.00	-0.63	0.32
4th degree	0.12	-0.48	0.72	-0.48	0.12

Stage 1: Intercept + Linear + Quadratic + 85.11 (-0.32) = 570.44Stage 2: Intercept + Linear + Quadratic + 85.11 (0.63) = 607.27Stage 3: Intercept + Linear + Quadratic + 85.11 (0) = 450.24Stage 4: Intercept + Linear + Quadratic + 85.11 (-0.63) = 239.93Stage 5: Intercept + Linear + Quadratic + 85.11 (0.32) = 112.84

HA = 395.94 - 406.41 (linear)- 102.45 (quadratic)

HA = 395.94 - 406.41 (linear) - 102.45 (quadratic) + 85.11 (cubic)

4th degree trend

Add the 4th degree scaled weights to the cubic trend

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Linear	-0.63	-0.32	0.00	0.32	0.63
Quadratic	0.53	-0.27	-0.53	-0.27	0.53
Cubic	-0.32	0.63	0.00	-0.63	0.32
4th degree	0.12	-0.48	0.72	-0.48	0.12

Stage 1: Intercept + Linear + Quadratic + Cubic - 62.75(0.12) = 562.91Stage 2: Intercept + Linear + Quadratic + Cubic - 62.75(-0.48) = 637.39Stage 3: Intercept + Linear + Quadratic + Cubic - 62.75(0.72) = 405.06Stage 4: Intercept + Linear + Quadratic + Cubic - 62.75(-0.48) = 270.05Stage 5: Intercept + Linear + Quadratic + Cubic - 62.75(0.12) = 105.31

HA = 395.94 - 406.41 (linear)- 102.45 (quadratic)

HA = 395.94 - 406.41 (linear) - 102.45 (quadratic) + 85.11 (cubic) - 62.75 (4th degree)

Call:

lm(formula = NS ~ Stage, data = eels)
Residuals:

Min 1Q Median 3Q Max -3.2575 -1.0269 0.2263 0.7137 2.4450 Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	10.9370	0.3763	29.067	1.33e-14	* * *
Stage.L	9.9928	0.8413	11.877	4.98e-09	* * *
Stage.Q	0.9501	0.8413	1.129	0.277	
Stage.C	0.8815	0.8413	1.048	0.311	
Stage^4	-1.1597	0.8413	-1.378	0.188	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.683 on 15 degrees of freedom Multiple R-squared: 0.9064, Adjusted R-squared: 0.8815 F-statistic: 36.33 on 4 and 15 DF, p-value: 1.496e-07

Results: NS

Which trend is significant?

Call:

lm(formula = water ~ Stage, data = eels)
Residuals:

Min 1Q Median 3Q Max -4.9475 -1.9519 -0.8325 1.8881 6.6650 Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	86.7245	0.7913	109.600	< 2e-16	* * *
Stage.L	-7.0131	1.7694	-3.964	0.00125	**
Stage.Q	-1.6243	1.7694	-0.918	0.37314	
Stage.C	-1.6507	1.7694	-0.933	0.36562	
Stage^4	1.0351	1.7694	0.585	0.56725	

Results: Water

7 - -

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3.539 on 15 degrees of freedom Multiple R-squared: 0.5422, Adjusted R-squared: 0.4201 F-statistic: 4.442 on 4 and 15 DF, p-value: 0.01745 Which trend is significant?

Protecting experiment-wise error rates outside of ANOVA

- There are other situations that generate more than one nonindependent p-value
 - Multiple predictor variables
 - Multiple response variables from the same subjects
- Post-hoc procedures only cover comparisons among levels of a single categorical predictor, don't work with these
- Need to either:
 - Adjust α
 - Use model selection methods (more later)

Adjustments to α

 To achieve an experiment-wise α = 0.05 with 3 p-values, test each p-value at:

• Dunn-Šidák method
$$\alpha' = 1 - \sqrt[k]{(1-\alpha)} = 1 - \sqrt[3]{1-0.05} = 0.0169$$

• Bonferroni
$$\alpha' = \alpha/k = 0.05/3 = 0.0167$$

 Advantage: these can be applied to any procedure (e.g. which of the eel ANOVA's would still be significant at 0.0167?)

Eel analysis – three responses, same stages

Variable	р	Un-adjusted	Bonferroni: 0.0167	Dunn-Šidák: 0.0169
HA	1.8e-7	Signif.	Signif.	Signif.
Water	0.0174	Signif.	NS	NS
NS	1.5e-7	Signif.	Signif.	Signif.

Bonferroni is always a little lower than Dunn-Šidák, and is thus more "conservative" = fewer significant differences will be found

The false discovery rate problem

- Exploratory data analysis is becoming more common
 - Data mining
 - Automated data collection on thousands of variables at once
- The number of "false discoveries" (Type I errors, false positives) may be huge
 - Expect 5% of the p-values to give us Type I errors if the null is true
 - With 1,000 p-values that's 50 false discoveries expected
- False discoveries waste time, money

Example: microarray analysis

- Microarrays express many, many genes (20,000 is not atypical)
- Expression measured by intensity of fluorescence on a chip
- Wish to separate those that are differentially expressed from those that are not

- Any that are differentially expressed will be studied further
- Initially, differential expression was based on "fold change" (i.e. 2 fold increase, 3 fold increase, etc.)
- Fold change is an arbitrary criteria, not grounded in probability better methods needed

The usual approaches: rock and a hard place

Rock: only very large differences will be significant

Bonferroni

Dunn-Šidák method

 $\frac{0.05}{20,000} = 0.0000025$

$$1 - \sqrt[20000]{1 - 0.05} = 0.00000256$$

Hard place: with no adjustment expect huge number of false positives $20,000 \times 0.05 = 1,000$

Benjamini and Hochberg's solution

- Calculate p-values for each gene (t-tests, ANOVA)
- Sort them from smallest to largest
- Test the smallest at the most stringent level
- Test successive p-values at increasingly less stringent level
- Specifically, for m tests, ordered from lowest to highest p-value, from k = 1 to m, and test at:

$$P_k \leq \frac{\kappa}{m} \alpha$$

 E.g. test smallest p-value at α/m (Bonferroni), second at 2α/m, third at 3α/m, final (biggest) at mα/m = α.

A BH FDR graph for simulated data

BH balances between excessive missed positives and excessive false positives, gives the lowest combination of false positives and false negatives