
  

Multiple regression

Regression with more than one predictor



  

Multiple regression – using 2 or more predictors 
for a response

● Linear combination
– Linear = a coefficient multiplied by a variable
– Combination = terms added together

● Model predicts position on a plane, instead of a line (if 3 predictors it’s a 
hyperplane)
– Or, you can think of it as a series of parallel lines

● Additional predictors added as coefficients multiplied by the predictor 
variable

ŷ=β0+β1 x1+β2 x2

ŷ=β0+β1 x1+β2 x2…+βn xn



  

Two predictors, one at a time

ŷ=8+1 x1 ŷ=12−1 x2
r2 = 0.5 for each, one at a time

Cool, interactive 3D version 
on web site...



  

Holding x2 constant, 
varying x1

ŷ=10+1 x1−1 x2

x2 x1 y
0 0 10

1 11
2 12
3 13
4 14

4 0 6
1 7
2 8
3 9
4 10

ŷ=10+1 x1−1(0)=10+1 x1

ŷ=10+1 x1−1(4)=6+1 x1

And, if we continued by setting x2 to 1, 2, and 3 we predict every point exactly – R2 = 1 together



  

ŷ=10+1 x1−1 x2

ŷ=10+1(4)−1 x 2=14−1 x2

ŷ=10+1(0)−1 x2=10−1 x2

Holding x1 constant, 
varying x2

x1 x2 y
0 0 10

1 9
2 8
3 7
4 6

4 0 14
1 13
2 12
3 11
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Reasons to use more than one predictor
● Statistical elimination – accounting for one (nuisance) variable so that 

the effect of another can be measured
– Reducing statistical noise – a nuisance variable affects the response and 

needs to be accounted for
● Example: variation in initial mass masking the effect of food intake on fat mass of mice

– Avoiding spurious relationships – a relationship that appears to be due to one 
predictor is actually due to another

● Example: apparent effect of height on math test scores in kids
● Accounting for complexity – more than one predictor necessary to 

understand the response
– Example: wood volume as a function of tree height and diameter



  

Fat mass by food intake
● Fat mass of mice given different 

daily food intakes
● Noisy data!

– Mice didn’t all start at the same 
size

– Leads to lots of variation in fat 
mass that isn’t due to food intake

● Not significant (p = 0.65)
● How can we reduce the noise?



  

We can’t fix this problem in our design
● Ideal experiment would:

– Use animals that were all the same size, with the 
same initial fat masses

– Measure the initial fat mass and the final fat mass, 
use the difference to measure fat gain

● Real experiments not always ideal
– Mice come in different sizes, with different amounts of fat – can’t just set them all to the 

same initial sizes
– Measuring fat mass accurately is done by extracting fat from a carcass, can only be done 

once
● Fixing the problem by changing the experimental design is not possible
● We need to address the problem analytically



  

Relationship between initial weight and fat mass

Observation with a 
big final fat mass, 
given initial mass – 
lots of fat gain

Residual is variation left 
after initial weight is 
accounted for

Fat . mass=3.32+0.20 Initial .weight

Observation with a small 
final fat mass, given initial 
weight – less fat gain 
(maybe loss)



  

Residuals are the fat mass 
independent of initial weight

The fat vs. initial weight regression line is 
the relationship between the variables

Residuals are variation in fat that’s 
unrelated to initial weight

Like setting all the animals to the same 
starting weight of 0



  

Also need food intake 
independent of initial weight

Correlation between food intake and 
initial weight is very small
(slope (b) = -0.00189, r = -0.028)

Need the relationship to be 0

Residuals for this relationship make 
food intake perfectly independent of 
initial weight 
(r = 0, slope = 0)



  

Relationship between fat and food intake, with 
initial weight eliminated

● Regress fat residual on 
food residual

● Now can see the 
positive relationship

● Significant 
(p = 0.001)

● Slope is 0.331

Another cool 3D graph...



  

Simpler (better) approach: include initial weight 
as a second predictor

Response: Fat.mass
               Df  Sum Sq Mean Sq F value    Pr(>F)    
Initial.weight  1 29.5886 29.5886 926.837 < 2.2e-16
Food.intake     1  0.3628  0.3628  11.363  0.002076 
Residuals      30  0.9577  0.0319

Both initial weight and food intake are predictors in the model
Each is tested for an effect on fat mass
F is MSpredictor/MSresidual for each

Correctly accounts for the fact that the relationship with initial weight is 
estimated from the data – 1 df deducted for initial weight



  

Model multiple R2

Response: Fat.mass
               Df  Sum Sq Mean Sq F value    Pr(>F)    
Initial.weight  1 29.5886 29.5886 926.837 < 2.2e-16
Food.intake     1  0.3628  0.3628  11.363  0.002076 
Residuals      30  0.9577  0.0319
 
                

Model R2= (29.5886+0.3628)
(29.5886+0.3626+0.9577)

=0.97

Now a multiple R2 – tells us how much variation is explained by the entire model
Here calculated as sum of the two predictor SS (works with Type I ANOVA)



  

Coefficients tested are partial regression 
coefficients

      Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    2.146942   0.384845   5.579 4.55e-06 ***
Initial.weight 0.204894   0.006712  30.526  < 2e-16 ***
Food.intake    0.331684   0.098394   3.371  0.00208 ** 
                

Slope on food intake identical to fat resid on food resid, but including initial weight as a predictor 
properly accounts for estimating its slope – deducts 1 df from residuals
Intercept is fat mass expected when initial weight and food intake both set to 0



  

Cost of failing to account for initial weight

Response: Fat.mass
               Df  Sum Sq Mean Sq F value    Pr(>F)    
Initial.weight  1 29.5886 29.5886 926.837 < 2.2e-16 ***
Food.intake     1  0.3628  0.3628  11.363  0.002076 ** 
Residuals      30  0.9577  0.0319

Response: Fat.mass
               Df  Sum Sq Mean Sq F value    Pr(>F)    
Food.intake     1  0.3628  0.3628  0.3682  0.548412 
Residuals      31  30.546  0.9854

Variation that isn't accounted for goes into the residual term → smaller F, bigger p
Same amount of explained variance for food intake is no longer significant



  

Spurious relationships
● Relationships that are statistically significant, but don't 

represent a cause and effect relationship, are “spurious”
● They often happen because a third variable is actually 

responsible
– The third variable is responsible for a change in both the predictor 

and the response → predictor and response appear to be related
● How can we know?



  

Example: nuisance variables 
and spurious relationships

AMA – scores by grade school kids on a standardized math test
Why might this be spurious? What might be a better explanation?

AMA HGT

10.31 129.44

10.77 129.46

10.16 131.81

11.73 130.54

12.20 130.73

11.40 134.31

11.80 134.07

13.39 135.27

12.30 135.24

... ...



  

Both height and math ability are related to age

In 3D...



  

Is there still a relationship between height 
and AMA, once age is accounted for?
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Height for age Height for age

One possibility: still a relationship after 
accounting for age

Other possibility: all of the apparent 
relationship was due to age, none left after 
age is accounted for

Which one is it?



  

No effect of height once age is accounted for

The relationship 
between height and 
math ability is spurious



  

Complexity – responses can be affected by 
multiple causes

● Biological systems are often affected by multiple factors
● Including more than one predictor in a model allows their joint 

effects to be assessed
● Simple example – volume of lumber is determined by both 

height of tree and its diameter



  

Volume of trees is affected by diameter and 
height

Or, in 3D...



  

Volume of trees is affected by 
diameter and height

lm(formula = Volume ~ Diam + Height, data = trees)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***
Diam          4.7082     0.2643  17.816  < 2e-16 ***
Height        0.3393     0.1302   2.607   0.0145 *

Analysis of Variance Table
Response: Volume
          Df Sum Sq Mean Sq  F value  Pr(>F)
Diam       1 7581.8  7581.8 503.1503 < 2e-16 ***
Height     1  102.4   102.4   6.7943 0.01449 *
Residuals 28  421.9    15.1

^Volume=−57.98+4.7 Diam+0.33Height



  

Complication: correlated predictors
● Correlations between predictors = collinearity (multicollinearity)
● Collinearity was responsible for the spurious relationship between AMA 

and height
● When we know which variable is likely to be spurious we can use the 

collinearity with other, better predictors to test for spuriousness
● But, we don’t always know – collinearity can also mask real relationships
● If two predictors are sufficiently correlated their independent effects on the 

response can’t be told apart
– Too much shared SS between predictors, not enough independent variation
– Big standard errors on coefficients (variance inflation)



  

Collinear predictors can mask real effects

● High correlations between predictors make it difficult to 
measure their independent effects

● Example: caloric content of food
– Calories in food is due to digestible macronutrients: carbohydrate, fat, 

and protein
– Water does not have any calories, but watery foods are low in all of 

the macronutrients



  

The basic patterns



  

Each predictor, one at a time
Response: log.kcal
           Df Sum Sq Mean Sq F value    Pr(>F)    
log.carb    1 95.714  95.714  712.02 < 2.2e-16 ***
Residuals 140 18.820   0.134                      

           Df Sum Sq Mean Sq F value    Pr(>F)    
log.fat     1 41.470  41.470  79.461 2.384e-15 ***
Residuals 140 73.064   0.522                      

             Df Sum Sq Mean Sq F value    Pr(>F)    
log.protein   1 40.741  40.741  77.295 4.816e-15 ***
Residuals   140 73.793   0.527                      

             Df  Sum Sq Mean Sq F value    Pr(>F)    
logit.water   1 104.338 104.338  1432.7 < 2.2e-16 ***
Residuals   140  10.196   0.073                      



  

All the predictors together
Anova Table (Type II tests)

Response: log.kcal
            Sum Sq  Df  F value    Pr(>F)    
logit.water 1.1779   1  52.8548  2.49e-11 ***
log.fat     2.4307   1 109.0673 < 2.2e-16 ***
log.carb    4.5828   1 205.6306 < 2.2e-16 ***
log.protein 0.0062   1   0.2785    0.5985    
Residuals   3.0532 137

What’s wrong with this result?



  

Partitioning variance in a regression

Calories

Protein

One predictor

Unexplained 
variation in calories

Variation in protein 
that explains 
variation in calories

Variation in protein that 
doesn't explain variation 
in calories



  

Two predictors that are independent

Calories

Protein

Unexplained 
variation in calories

Variation in calories 
explained by 
protein

Variation in protein that 
doesn't explain calories

Water

Variation in calories explained by water

Variation in water that 
doesn't explain calories



  

Two predictors that are correlated

Calories

Protein

Unexplained 
variation in calories

Variation in 
calories 
explained only by 
protein

Water

Variation in calories explained 
only by water

Variation in calories that 
is explained by either 
protein or water

Variation in protein and 
water shared with each 
other, but that doesn’t 
explain variation in 
calories



  

What to do with the correlated part?
● Not uniquely attributable to either 

predictor
● We have choices for how to deal 

with this:
– Assign it entirely to one of the 

predictors – 
Type I sums of squares

– Remove it from both predictors – 
Type II sums of squares

Calories

Protein Water



  

Sequential SS (Type I)
● Predictors added one at a time

– First predictor is entered, assigned all of the variation in response it 
explains

– Second predictor added, only assigned variation it explains in 
response that isn’t already explained by the first predictor (repeat 
until all entered)

– Sum of the sequential predictor SS equals to model SS
– Sum of the predictor SS + residual SS = total SS

● The order that variables are entered affects the results – the 
ANOVA table p-values won’t match the coefficient test p-values, 
except for the last variable entered



  

Type I tests with foods data
Response: log.kcal
             Df  Sum Sq Mean Sq  F value    Pr(>F)    
logit.water   1 104.338 104.338 1781.071 < 2.2e-16
log.protein   1   2.053   2.053   35.041 2.401e-08
Residuals   139   8.143   0.059

Response: log.kcal
             Df Sum Sq Mean Sq F value    Pr(>F)    
log.protein   1 40.741  40.741  695.46 < 2.2e-16
logit.water   1 65.650  65.650 1120.65 < 2.2e-16
Residuals   139  8.143   0.059 Calories

Protein Water

Calories

WaterProtein



  

Adjusted SS (Type II)
● Only variation that can be attributed uniquely to each predictor is 

tested
● Predictors all entered, then one at a time is dropped

– Loss of model SS after the predictor is dropped is assigned to that predictor
– Shared variation is not assigned to any predictor (still used for the whole-

model omnibus test, and to calculate R2)
– Adjusted SS for predictors does not add up to the model SS unless the 

predictors are perfectly independent
● The order entered doesn’t matter
● The p-values in the ANOVA table match the coefficient tests, because 

both are testing partial relationships



  

Calories

Protein Water

Type II tests for food data

Response: log.kcal
            Sum Sq  Df  F value    Pr(>F)    
logit.water 65.650   1 1120.650 < 2.2e-16
log.protein  2.053   1   35.041 2.401e-08
Residuals    8.143 139

Only the variation explained by a predictor uniquely is tested
The correlated part is not included in either (so, model + residual SS don’t sum to total)
Note that SS are the same as Type I table for the predictor entered last



  

Which to use, Type I or Type II SS?
● Depends on the question
● There are ways to design experiments that will make them 

identical – do this when possible
● If there are correlations between your predictors, and one is a 

“nuisance”, then either use Type II, or Type I with the nuisance 
entered first

● If none are known to be nuisances, it's useful to look at the 
differences between Type I and Type II tests – more on this 
later



  

Calories

Protein Water

Calories

Protein                  Water

Calories

ProteinWater

Calories

ProteinWater

If there is a small 
correlation

If there is a large 
correlation, equal amounts 
of uncorrelated variation 
that explains calories

Protein and water 
both significant 
with either 
Type I or II SS

Protein and water both 
significant for II, first entered 
much lower p-value than second 
entered for I

If there is a large correlation, 
unequal amounts of uncorrelated 
variation that explains calories

Protein significant for 
both I and II, water not 
significant for II, only if 
entered first for I

If there is a perfect 
correlation

Can't tell effects of 
individual predictors, 
first entered significant 
for I, neither for II



  

What's the model?

Which predictors will 
have positive 
coefficients? Which 
negative?
Just one line per 
predictor, what's 
happening with the 
other predictors?
Is it possible the R2 
is higher than 0.95? 
Why or why not?
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