
  

Experimental design

Designing experiments for reliable results



  

Experimental design
● The logical construction of an experiment
● The most important part of your statistical education!

– If you design an experiment well you will get reliable, clear results, and will 
be able to find a suitable way to statistically analyze the data

– If you design an experiment poorly no amount of statistical wizardry will 
save you!

● It’s very important to know how to design experiments that yield 
reliable results

● It’s important to be able to recognize design flaws in the studies you 
read



  

The goal of an experiment
● Testing for cause/effect relationships is done with manipulative 

experiments
– Make a change in the predictor variable
– Observe responses

● To accomplish this goal, we want to:
– Obtain clean, clear results → minimum of noise in the data, maximum 

statistical power (minimize Type II errors)
– Avoid wasted time, effort, and money → faster progress
– Isolate factors to test → what we think we are testing is what we actually 

are testing



  

The Experimental Ideal
● The Experimental Ideal = controlled, manipulative experiments 

in which we:
– Hold everything constant except the one variable we want to test
– Vary that single predictor of interest, measure the response

● Done correctly, there will be only one possible explanation for 
an observed change in the response variable
– Or rather, only one possible explanation aside from a false positive, 

Type I error...can’t eliminate that possibility



  

The enemy: confounded variables
● When more than one predictor variable could explain a 

response the predictors are confounded
● Confounded predictor variables are a failure to isolate variables, 

and lead to unclear, uncertain results
● An apparent treatment effect that is actually due to a 

confounded variable is called a spurious result



  

Example: studying the effects of an antibiotic on 
bacterial growth

● Bacteria, E. coli, grown in cultures in the lab
● What's the best way to test for an effect of antibiotic?



  

Good design?

No antibiotic

Antibiotic 
added



  

Replication
● Replication → confidence in the consistency, repeatability of a result
● Replication is done at the level of application of the treatment

– Each independent application of the treatment is a “replicate”
● Antibiotic added to an entire flask, with responses 

measured for multiple samples from each 
flask = pseudoreplication
– Sometimes done intentionally as “technical replicates” - 

used to assess repeatability, consistency of measurements
– True independent application of treatments are “biological replicates”

● How would we truly replicate the E. coli experiment?



  

Replication – four separate cultures per group



  

How about this?

Controls

Antibiotic added 
the next day

a

c
d

b
a

b

c
d

One sample 
per flask

One sample 
per flask

Replication? 
Controls?
What’s wrong?



  

Simultaneous, independent controls are better

Controls

Antibiotic 
added

One sample per flask

One sample per flask



  

Assigning subjects to treatment groups

1

Controls

2 3 4 5 6 7 8

1 2 3 4 5 6 87

Antibiotic

Problem?



  

Random assignment
● Selection bias → individuals chosen for treatment group are not the 

same (on average) as those in control, even before treatment is 
applied

● Examples:
– First 10 mice caught → treatment, next 10 mice caught → control
– First 4 flasks decanted from stock culture → control, next 4 → treatment
– Asking for (human) volunteers to be in treatment group

● Best method for avoiding it is to randomly assign subjects to treatment 
groups
– Works even with variables we don’t know about



  

Random assignment of subjects to treatment 
groups

1

Controls

2 3 4 5 6 7 8

Antibiotic

Random number generator

8 3 1 6 7 5 2 4



  

Isolating factors
● What is the problem with:

– Testing the effect of caffeine on plant growth by watering treatment 
plants with coffee, control plants with water?

– Testing the effect of surgical ligation of the superficial mammary 
artery on chest pain by ligating treatment patients, and doing no 
surgery of any kind on controls?

– Testing the effect of a headache medicine by giving the medicine to 
treatment patients, and giving nothing to controls?

● To isolate the effect of the treatment, controls have to be 
identical in every possible way except for the treatment



  

Which would be better?

Controls Antibiotic

8 3 1 6 7 5 2 4

Controls Antibiotic

Nothing
Saline + antibiotic

Saline + antibioticSaline

This...

...or this?

8 3 1 6 7 5 2 4



  

Placebos, sham treatments, blinding
● Subjective response variables are problematic – the scientist’s 

expectations can affect their recording of responses
– Solution: have a different people apply the treatments and record the data – the 

recording person doesn’t know what the treatments are
– This is called blinding of the researcher

● If the subjects are also people, their expectation of getting better (in the 
treatment group) or not (in the control group) can affect their state
– Particularly problematic in pain studies, or any case in which patient reporting of 

improvement is needed → subjectivity
– Solution: blind the patient as well

● Double-blinded studies are the gold standard in clinical trials



  

Blocking
● Blocking is a design method, and an accompanying statistical method

– Common for an experimental design to have an accompanying ANOVA 
design used to analyze the data properly

● Blocking allows for us to use statistical elimination with categorical 
variables
– Factors that are nuisance variables are the blocks

● Done correctly, blocks are independent of (orthogonal to) the 
scientifically interesting variables (and each other)
– Statistically reduce the amount of random, unexplained variation
– Don’t interfere with measurement of the treatment effect



  

Example: carnations 
experiment

● A carnation grower is interested in effects of 
watering (predictor) on the number of blooms 
(response) put on by carnations
– Predictor is categorical, with three levels: 

1=low, 2=medium, 3=high
– Replication: 12 plants grown at each water level

● Possible confounded effects
– Shade – different areas have different levels of 

sunlight
– Bed – different beds available to do the 

experiment
● Experimental ideal solution: standardize

– Grow all at the same level of shading
– Use only one flower bed



  

Holding shade and bed constant
Response: blooms
          Df Sum Sq Mean Sq F value    Pr(>F)
Water      2 3.6977  1.8488  9.9262 0.0004216 ***
Residuals 33 6.1465  0.1863
Total     35 9.8442

R-squared = 0.3756
● Water affects number of blooms
● Using one bed, one shade level → 

low overall variance, clean result, 
low p-value



  

What if you can’t hold everything constant?
● Can’t always because:

– Not enough space with constant levels of shade for all 36 plants → 
can’t hold shade constant

– Not enough space in a single bed → can’t hold bed constant
● Since we know these variables could be important, we can 

block on them (by design), and account for them (in analysis)



  

The Randomized Complete Block design
● The Randomized Complete Block design – used to account for 

nuisance variables that can’t be held constant
● Blocks and treatment variables are independent (orthogonal)

– Each treatment level appears in each block = complete
– Randomly assigning subjects to the needed combination of treatment and 

block = randomized
– Number of replicates in each cell (i.e. combination of treatment and block) 

is the same = balanced
● If the blocks are orthogonal to the treatment, they can’t possibly 

give the appearance of a treatment effect → no confounding!



  

Example: block on shade, use a single bed
● Shade is the blocking variable
● Every combination of water level and shade level is used = 

complete
● Pots randomly assigned to treatment / block combinations = 

randomized
● Equal numbers of each combination of shade and water 

level (3) = balanced
– Equal numbers of each shade level (9)
– Equal numbers of each water level (12)
– Equal numbers of each combination (3)

● Intersperse the treatments within a block to avoid position 
effects



  

Accounting for blocks in your analysis
● The block design prevents confounding even if the block is not accounted for 

statistically in your analysis
● But, to get the full benefit of blocking you need to account for the variation in 

the data between blocks statistically
● Partition the variance in number of blooms explained into effects of:

– Water treatment – SS accounted for by water
– Shade level – SS accounted for by shade level

● Orthogonal designs mean that:
– The SS for water treatment will be identical whether shade level is included or not
– No correlation between predictors, so Type I and Type II SS are the same (order 

doesn’t matter)



  

Remember: ANOVA 
calculations

WATER

1 2 3

4.35 4.46 4.11

3.28 4.36 4.36

3.81 4.36 4.49

3.31 4.57 4.11

3.67 4.67 4.36

4.1 5.49 5.07

3.6 4.35 3.45

3.13 5.06 4.36

3.81 4.23 3.65

4.11 4.68 3.86

3.54 4.25 3.91

3.32 2.94 3.65 Grand 
mean

Water 
means

3.67 4.45 4.12 4.08

SS Total=∑ (Obs .i−Grand mean)
2=11.47

SSWater=12∑ (Water meani−Grand mean)
2=3.70

SS Resid .=SS Total−SSWater=7.77

Water means are marginal means = means in the 
margins of the table
- Water means average across the shade levels
Explained variation is based on differences between 
means at each water level and grand mean
Anything not explained by water level is part of the 
residual SS



  

ANOVA for water

● Water is significant
● Shade is orthogonal with water by design, can’t 

be the reason for the apparent effect of water
● But, we aren’t accounting for the effect of 

shade in our analysis – we can do better

Response: blooms
          Df  Sum Sq Mean Sq F value    Pr(>F)
Water      2  3.6977  1.8488  7.84590 0.0016310
Residuals 33  7.7763  0.2356
Total     35 11.4740

R-squared = 0.4663



  

Accounting for shade
WATER

SHADE 1 2 3 Shade 
means

1 4.35 4.46 4.11

3.28 4.36 4.36 4.18

3.81 4.36 4.49

2 3.31 4.57 4.11

3.67 4.67 4.36 4.37

4.1 5.49 5.07

3 3.6 4.35 3.45

3.13 5.06 4.36 3.96

3.81 4.23 3.65

4 4.11 4.68 3.86

3.54 4.25 3.91 3.81

3.32 2.94 3.65

Water 
means

3.67 4.45 4.12 Grand 
mean
4.08

SS Shade=9∑ (Shade meani−Grand mean)
2=1.65

SS Total=∑ (Obs .i−Grand mean)
2=11.47

SSWater=12∑ (Water meani−Grand mean)
2=3.70

SS Resid .=SS Total−SS Shade−SSWater=6.12

Now have marginal means for:
- Shade - average across the water levels
- Water - average across the shade levels
SS for shade is subtracted from the residual SS, so 
residual SS is smaller



  

Accounting for shade – ANOVA table

Response: blooms
          Df  Sum Sq Mean Sq F value    Pr(>F)
Water      2  3.6977  1.8488  9.0575 0.0008368 ***
Shade      3  1.6527  0.5509  2.6988 0.0633999 .
Residuals 30  6.1236  0.2041
Total     35 11.4740

R-squared = 0.4663
● Shade accounts for some variation in 

blooms, not significant
● F for water is MSwater/MSresidual

● F for shade is MSshade/MSresidual



  

The GLM model blocking on shade

Blooms=3.7675 + 0.7825Water 2
0.4458Water 3

+
0.1967Shade2

−0.2156 Shade3
−0.3689 Shade4

What is the intercept?
What are the slope coefficients?
Graph shows predicted means 
for combinations of shade and 
water based on the model



  

Block analysis does not use means for 
combinations of water and shade!
The data The GLM

Left is group means, right is the predicted values for each group – not the same!
Model assumes additive, independent marginal effects → parallel lines
Not what the data shows! To model non-parallel lines need interactions – later



  

Block on shade and bed

Every combination of 
bed, shade, and 
water appears once
Most complicated we 
can make this 
design!

To block on anything 
else would require 
more replicates, or 
fewer levels for 
treatment or block



  

Water, shade and bed
WATER

Bed 1 Mean 4.09

SHADE 1 2 3 Shade 1 mean

1 4.36 4.47 4.12 4.13

2 3.32 4.58 4.12

3 3.61 4.36 3.46

4 4.12 4.69 3.87

Bed 2 Mean 4.41

SHADE 1 2 3 Shade 2 mean

1 3.61 4.69 4.69 4.32

2 4.00 5.00 4.69

3 3.46 5.39 4.69

4 3.87 4.58 4.24

Bed 3 Mean 3.59

SHADE 1 2 3 Shade 3 mean

1 3.32 3.87 4.00 3.91

2 3.61 5.00 4.58

3 3.32 3.74 3.16 Shade 4 mean

4 2.83 2.45 3.16 3.76

Water means 3.62 4.40 4.07 Grand mean 4.08

SS Shade=9∑ (Shade meani−Grand mean)
2=1.65

SS Total=∑ (Obs .i−Grand mean)
2=15.60

SSWater=12∑ (Water meani−Grand mean)
2=3.70

SS Resid .=SS Total−SS Shade−SSWater−SS Bed=6.12

SS Bed=12∑ (Bed meani−Grand mean)
2=4.13

Marginal means – shade means across beds and water levels
Bed means across shade and water levels
Water means across beds and shade levels



  

Effects of water, shade and bed
Response: Blooms
          Df  Sum Sq Mean Sq F value    Pr(>F)
Bed        2  4.1269  2.0634  9.4350 0.0007374
Shade      3  1.6527  0.5509  2.5189 0.0783731
Water      2  3.6977  1.8488  8.4537 0.0013420
Residuals 28  6.1236  0.2187
Total     35 15.6009

R-squared = 0.6075

● Greatest total variation in number of blooms
– Variation due to water
– Variation due to shade
– Variation due to bed

● Highest model R
2

● Most informative – we now know the effect of water, 
shade, and flower bed on blooms in carnations



  

The model of water, shade, and bed

Blooms=3.78 + 0.78Water2
0.45Water3

+
0.20 Shade2

−0.22 Shade3
−0.37 Shade4

+ 0.32Bed 2
−0.50 Bed 3

Intercept?
Slopes?
Which is predicted to be 
the best combination of 
shade, bed, water?



  

Block designs that are balanced are orthogonal

Type I SS - order doesn’t matter

Response: blooms
          Df  Sum Sq Mean Sq F value   Pr(>F)   
shade      3  1.6465 0.54882  1.6064 0.208609   
water      2  3.7153 1.85767  5.4373 0.009661
Residuals 30 10.2496 0.34165

Response: blooms
          Df  Sum Sq Mean Sq F value   Pr(>F)   
water      2  3.7153 1.85767  5.4373 0.009661
shade      3  1.6465 0.54882  1.6064 0.208609   
Residuals 30 10.2496 0.34165  

     shade
water 1 2 3 4
    1 3 3 3 3
    2 3 3 3 3
    3 3 3 3 3
Equal number of replicates for 
each cell = balanced design



  

Block designs that are unbalanced are
not orthogonal

Type I SS - order matters now

Response: blooms
          Df Sum Sq Mean Sq F value   Pr(>F)   
shade      3 1.5958 0.53193  1.5819 0.215069   
water      2 4.1524 2.07622  6.1747 0.005834
Residuals 29 9.7512 0.33625 

Response: blooms
          Df Sum Sq Mean Sq F value   Pr(>F)   
water      2 4.2023 2.10117  6.2489 0.005539
shade      3 1.5459 0.51529  1.5325 0.227099   
Residuals 29 9.7512 0.33625  

     shade
water 1 2 3 4
    1 2 3 3 3
    2 3 3 3 3
    3 3 3 3 3
Unequal number of replicates 
for each cell = unbalanced 
design

The more unbalanced the 
design, the less independent 
the predictors become



  

Orthogonal predictors in 
regression

● Correlation has to be exactly 0
● Can be achieved by design, if you 

have...
– Evenly spaced predictor values
– Equal number of measurements at 

each combination of values

...the correlation is 0, and 
predictors are orthogonal

Temperature Nitrogen Response
10 5 …
15 5 …
20 5 …
25 5 …
10 10 …
15 10 …
20 10 …
25 10 …
10 15 …
15 15 …
20 15 …
25 15 …
10 20 …
15 20 …
20 20 …
25 20 …



  

Summary: sources of confounding, design 
solutions

Source of confounding Problem Design solution
Individual, random variation Any difference between individuals 

can look like a treatment effect
Replication

Spontaneous improvement, 
change over time

Changes due to factors other than 
the treatment

Simultaneous controls

Selection biases Assigning subjects to treatment and 
control that are already different 
before experiment

Random assignment of 
subjects to treatment 
groups

Differences due to conditions other 
than application of the treatment

Treatment variable is not isolated as 
only possible cause of a change

Sham treatment, placebos, 
(double) blinding

Unavoidable differences due to 
equipment, observer, 
environmental gradients, etc.

Added statistical noise, possible 
confounding, spurious results

Blocking, accounting for 
blocks in analysis



  

Effect size
● Effect size = size of response produced by a predictor variable

– Bigger effects are easier to detect with smaller n
● Measures of effect size often expressed as a signal to noise 

ratio (amount of effect of treatment / random variation)
– Ex. Cohen's d = (x̅1 – x̅2)/ s     (good for t-tests)
– Ex. Eta squared η2 = FSS/TSS
– Ex. Partial η2 = FSS/(FSS+RSS) 

● Effect size is a property of our study systems (which we don’t 
control) and experimental design choices (which we do)

(good for GLM's)



  

Increasing effect size through experimental 
design

● Increasing the signal
– Use a bigger dose of the treatment

● Avoid over-dosing (not so much water that you drown the flowers)
● Avoid dosages that are unreasonable (not more water than you can afford)

– Find study areas that are sufficiently different in the predictor variable (rainfall, 
nitrogen deposition, elevation, etc.)

● Decrease the noise
– Record data carefully, and with adequate precision
– Standardize research protocols
– Use homogeneous experimental subjects (or, measure and account for 

heterogeneities)
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