Mixing variable types

Analysis of Covariance (ANCOVA)

Mixing variable types

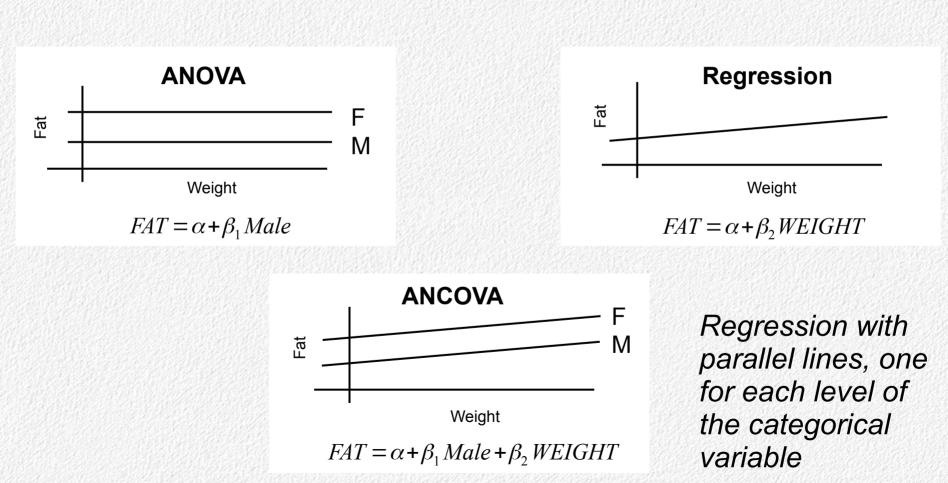
- Before you learned about the GLM, ANOVA and regression seemed to be distinct approaches
 - ANOVA for grouped data
 - Regression for numeric predictors
- Now that you know ANOVA and regression are the same thing, why not mix variable types?
- What happens when you include categorical variable and a numeric variable together in a GLM?

Generality of GLM

Table 6.1 Comparing word equations with traditional tests

Example	Traditional test	GLM word equation
Comparing the yield between two fertilisers	Two sample <i>t</i> -test	YIELD = FERTIL
Comparing the yield between three or more fertilisers	One way analysis of variance	YIELD = FERTIL
Comparing the yield between fertilisers in a blocked experiment	One way blocked analysis of variance	YIELD = BLOCK + FERTIL
Investigating the relationship between fat content and weight	Regression	FAT = WEIGHT
Investigating the relationship between fat content and sex, controlling for weight differences	Analysis of covariance	FAT = WEIGHT + SEX
Investigating which factors may influence the likelihood of spotting whales on a boat trip	Multiple regression	LGWHALES = CLOUD + RAIN + VIS
Investigating the factors which affect the number of blooms on prize roses	Two way analysis of variance	SQBLOOMS = SHADE WATER

Graphs and equations



Three reasons to do ANCOVA

- Experimentally interesting question is the regression line, but we need to account for a categorical variable (block)
 - Example: fat vs. weight, accounting for sex
- Experimentally interesting question is the comparison of means, but we need to reduce the noise to increase effect sizes
 - Example: leprosy bacteria, accounting for initial bacterial density
- Experimentally interesting question is the comparison of means, but we need to adjust the means to account for the effect of the covariate
 - Example: comparing wing chords between sexes of birds, adjusting for sex differences in mass

Blocking on a categorical variable

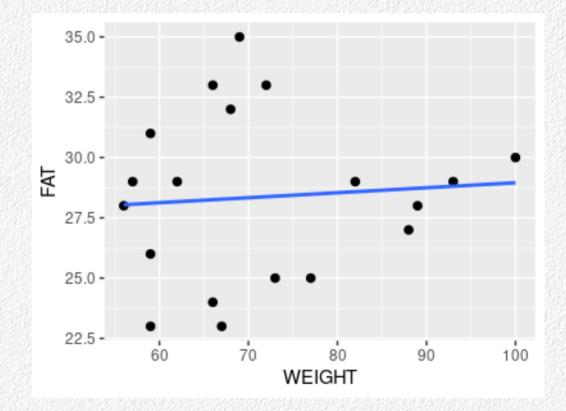
- The regression question is the interesting one, but there are groups in the data
 - Sexes
 - Age classes
 - Location samples are housed (greenhouse, chamber)
- For the regression to properly represent the numeric relationship between predictor and response, the grouping needs to be accounted for
- Example: fat mass/body mass relationship

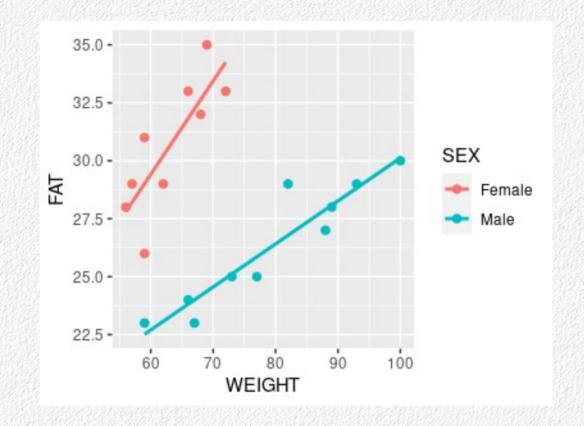
Fat mass vs. body mass relationship for a sample of people

Analysis of Variance Table Response: FAT Df Sum Sq Mean Sq F value Pr(>F) WEIGHT 1 1.328 1.3282 0.104 0.751 Residuals 17 217.093 12.7702

Not a significant relationship between fat and weight

What's wrong with this picture?

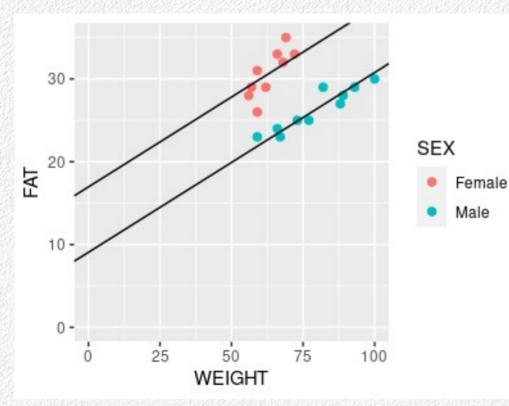




The sexes seem to have a similar fat vs. weight relationship, but women have higher fat percentages at a given weight Model is FAT ~ WEIGHT + SEX

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept)16.962282.410217.0382.80e-06***WEIGHT0.217150.037245.8312.56e-05***SEXMale-7.903750.95337-8.2903.48e-07***

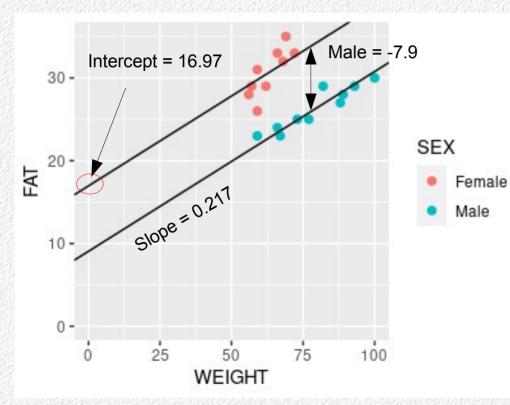


- What does the intercept mean?
- What is the male coefficient?
- Is the slope the same or different for males and females?

 $FAT = 16.96 + 0.217 \times WEIGHT - 7.904 \times Male$

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept)16.962282.410217.0382.80e-06***WEIGHT0.217150.037245.8312.56e-05***SEXMale-7.903750.95337-8.2903.48e-07***



 $FAT = 16.96 + 0.217 \times WEIGHT - 7.90 \times Male$ $FAT_{female} = 16.96 + 0.217 \times WEIGHT - 7.90 \times 0$ $FAT_{female} = 16.96 + 0.217 \times WEIGHT$ $FAT_{male} = 16.96 + 0.217 \times WEIGHT - 7.90 \times 1$ $FAT_{male} = 9.06 + 0.217 \times WEIGHT$

Slope is the same for both sexes

Intercepts are different

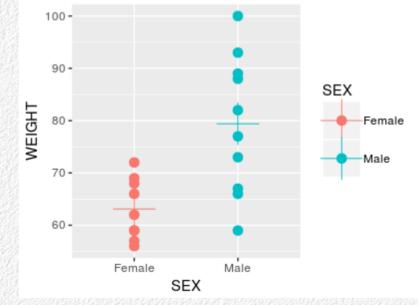
The SEXMale coefficient is the vertical distance between the lines at a given weight Anova Table (Type II tests)

ANOVA table

Response: FAT Sum Sq Df F value Pr(>F) 87.105 1 33.996 2.556e-05 *** 🔫 WEIGHT Test of fat vs. weight relationship, allowing for sex 176.098 1 68.729 3.482e-07 *** SEX differences in intercept Residuals 40.995 16 35.0 -32.5 -Accounting for the SEX different groupings in 30.0 FAT the data Female 27.5 Male 25.0 -22.5 -80 . 70 90 100 60 WEIGHT

Lack of independence of predictors

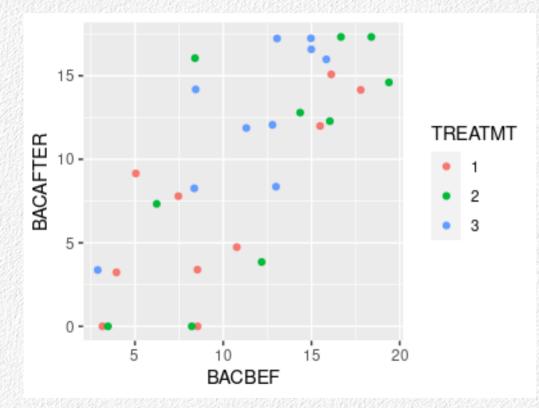
- Sex and weight are not orthogonal = not independent
 - The numeric variable is different on average between the categories \rightarrow sexes differ in mean weight
- $r^2 = 0.40$, equivalent to correlation of 0.63
- This means that:
 - Type II and Type I SS will be different
 - Order of entry of sex and weight will matter in Type I
- Solution: either enter the nuisance first, or use Type II



Classic ANCOVA

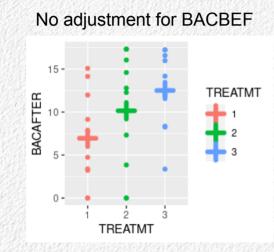
- Question of interest is comparison of group means
- But, there is a numeric variable that is a nuisance = a covariate
- Include the covariate in the model to:
 - Account for random variation caused by the covariate → statistical elimination, increase effect size of the treatment variable
 - Make comparisons between the covariate-adjusted means equivalent to setting the groups to the same value of the covariate

Cleaning up noisy data – leprosy experiment

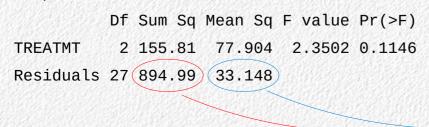


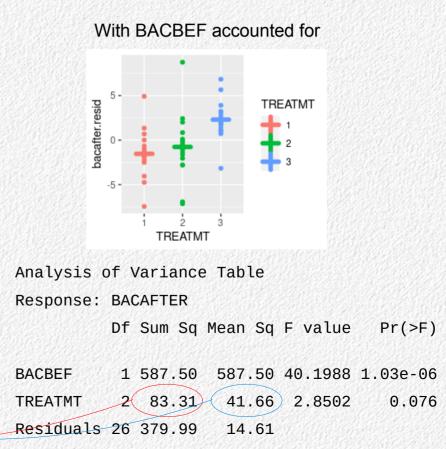
- Leprosy caused by bacteria
- Testing effects of three different treatments (levels 1, 2, 3)
- Amount of bacteria after treatment is partly due to initial bacteria levels, before treatment
- We're asking: is there an effect of treatment, once initial bacteria levels are accounted for?

Statistically eliminating BACBEF from the test of treatment on BACAFTER



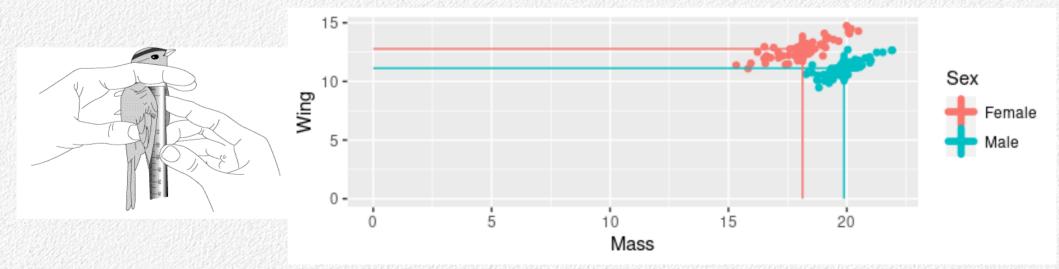
Analysis of Variance Table Response: BACAFTER





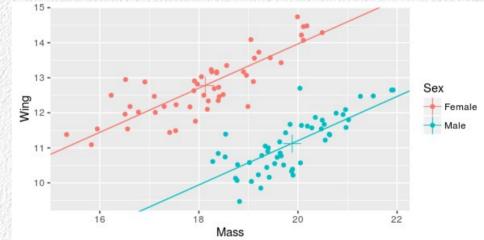
Making covariate-adjusted comparisons

- Good examples come from study of shapes and sizes or organisms = morphometrics
- In a species of bird we are studying, females have bigger wing chords
- But, the sexes are also different in mass males are heavier
- Is the wing difference really just a size difference (i.e. a difference in mass)?
- If the sexes were the same mass, what would the difference in wing chord be?

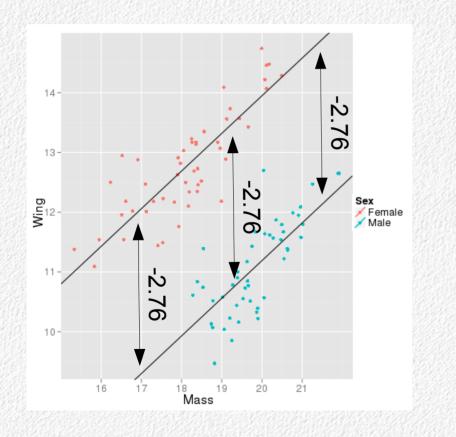


The goal of the analysis

- We will fit two parallel lines through the data
 - Same slope
 - Different intercepts
- We will use the regressions to find the wing chord for each sex at a common mass (called the least squares means)



Fitted model



 $R^2 = 0.82$ Males: Wing = 1.34 - 2.76(1) + 0.63 Mass -1.42 + 0.63 Mass

Females: Wing = 1.34 - 2.76 (0) + 0.63 Mass 1.34 + 0.63 Mass

Slope is the same for both sexes The coefficient for Male is the difference between the lines at any point along the x-axis

Fitted model

- The test of Sex (dummycoded) is based on mass-adjusted means
 - Vertical difference between the parallel lines
 - The SexMale coefficient
- Intercept is the mean wing chord for females that weigh 0 g

Call:

lm(formula = Wing ~ Mass + Sex, data = birds)
Residuals:

Min 1Q Median 3Q Max -1.14063 -0.31533 0.04671 0.30280 1.47952 Coefficients:

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	1.34656	0.85452	1.576	0.118		
Mass	0.63055	0.04697	13.423	<2e-16	* * *	
SexMale	-2.76222	0.12970	-21.297	<2e-16	* * *	
	1.1.1.1.1.1		866664			

Residual standard error: 0.5011 on 97 degrees of freedom Multiple R-squared: 0.8238, Adjusted R-squared: 0.8202

F-statistic: 226.8 on 2 and 97 DF, p-value: < 2.2e-16

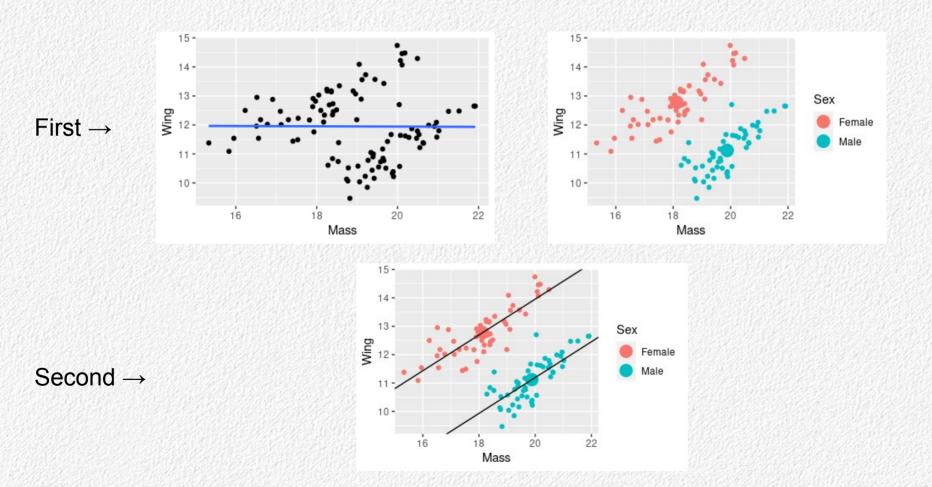
ANOVA tables

- Note that when Mass is entered first it has very low SS
- Type I SS assigns confounded variation to the first variable entered
 - The examples we've seen assign more SS when a variable is entered first
 - Here Mass gets a higher SS if it's entered second
- What happened here?

Analysis (Type I SS				
Response:	Wir	ng			
	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Mass	1	0.004	0.004	0.0155	0.9013
Sex	1	113.879	113.879	453.5571	<2e-16
Residuals	97	24.355	0.251		

Anova Tab	le (Туре	II	tests)	10.0110.077	
Response: Wing					
	Sum Sq	Df	F value	Pr(>F)	
Mass	45.241	1	180.19	< 2.2e-16	
Sex	113.879	1	453.56	< 2.2e-16	
Residuals	24.355	97			

Type I SS – mass explains very little without sex



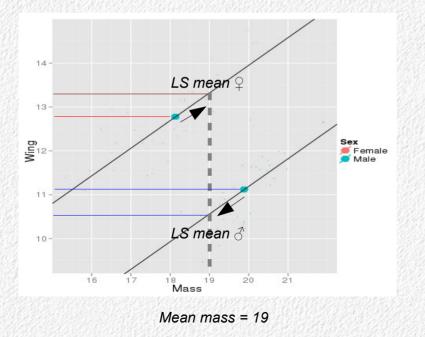
Estimating mass-adjusted mean wing chord

- It is **very important** to base your biological interpretations on what the statistical analysis is actually testing
- If we are testing mass-adjusted means, then mass-adjusted (least squares) means should be interpreted
- Obtained by predicting the mean of the response variable for each category at a selected value of the covariate
 - Usually done at the covariate mean the location of minimum SE
 - The difference in LS means is the same at any mass, as long as the same mass is used for both sexes
- May be closer together than the actual means or further apart depending on the data

Least-squares means

Vertical distance between the lines is a mass-adjusted measure of difference in wing chord

Predicted values for each sex at the same mass gives "least squares means"

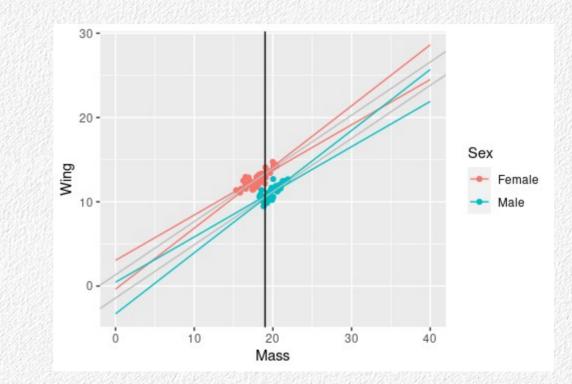


Males: Mass adjusted mean wing chord 1.34 – 2.76 (1) + 0.63 Mass -1.42 + 0.63 (19) = **10.55**

Females: Mass adjusted mean wing chord 1.34 – 2.76 (0) + 0.63 Mass 1.34 + 0.63 (19) = **13.31**

Why predict LS means at the mean of x?

- Lines are parallel, so vertical distance is the same at any mass
- But, standard errors smaller near he middle of the data
- At mean of mass they will be as small as possible for both sexes at once

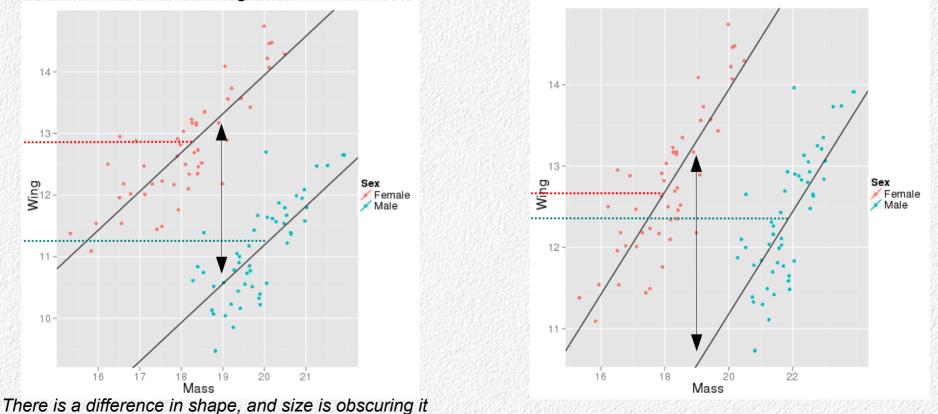


LS means are not always more different than raw means

- In this first example, there is more difference between sexes when mass is accounted for
- But, accounting for a significant covariate could:
 - Enhance the difference between sexes
 - Reduce difference between sexes
 - Make it impossible to tell if there is a difference or not

When accounting for the covariate enhances differences

Wing: Females > Males, Mass: Females < Males



When accounting for the covariate reduces differences

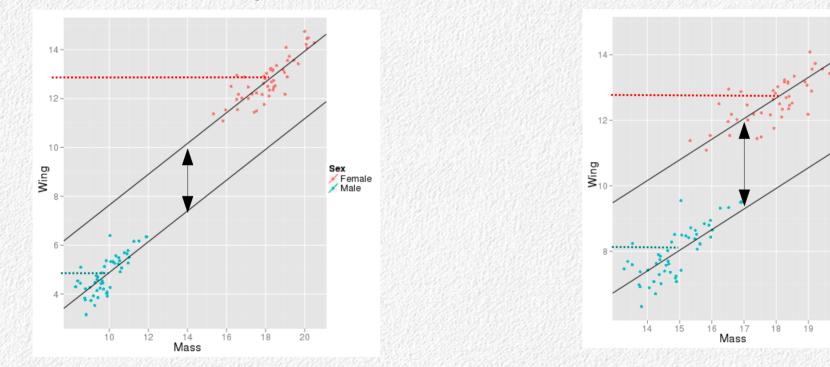
Sex

20

🗾 Female

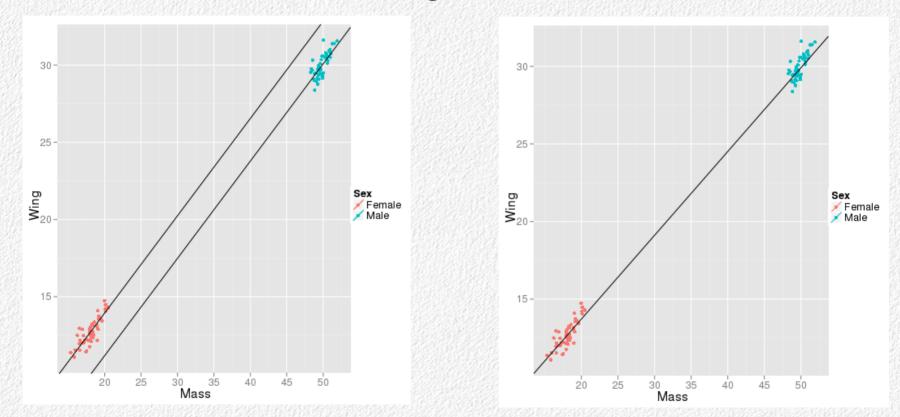
🖌 Male

Wing: Females > Males, Mass: Females > Males



The difference in wing chord is in part due to a difference in size Size is making the shape difference look bigger than it really is

When mass and sex are not statistically distinguishable

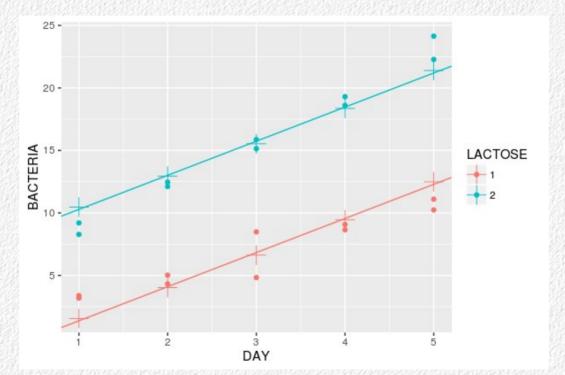


Sex is no longer significant, because a single line fits nearly as well as two parallel lines Conclude that the difference in wing shape is entirely due to differences in size

Sometimes a variable can be treated as either continuous or categorical

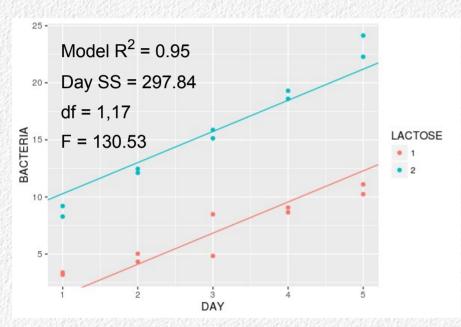
- Some variables can either be expressed as numeric values, or can be expressed as categories
- Examples
 - Change over time days since treatment (numeric), day of the week after treatment (category)
 - Dose milligrams of dosage (numeric), or high, medium, or low dose (category)
- We could:
 - Treat the variable as categorical and block on it
 - Treat the variable as numeric and use it as a covariate
- How to choose?

Growth of bacterial cultures over time under two different lactose treatments

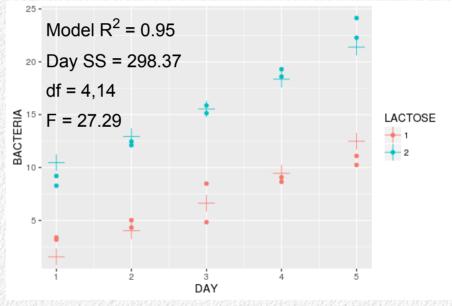


We can treat DAY as either categorical or numeric Does it matter? If so, which is best?

If BACTERIA has a linear relationship with DAY...

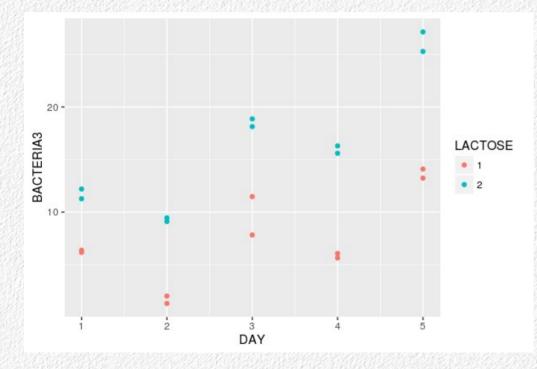


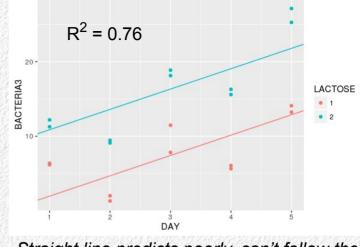
Regression gives a bigger F, because of the greater residual df \rightarrow greater power



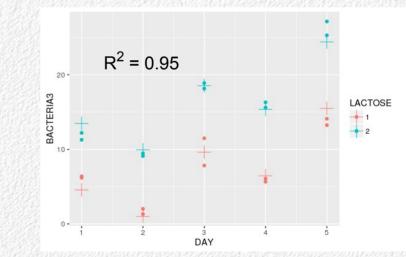
Block ANOVA has smaller F, because of 4 model df \rightarrow lower residual df

If the pattern isn't linear...





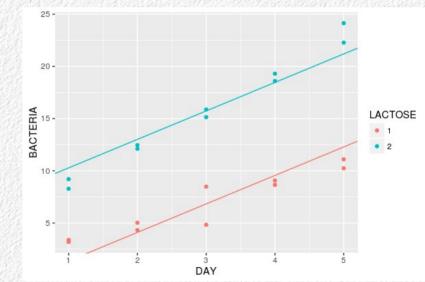
Straight line predicts poorly, can't follow the day to day oscillations



Means can stay close to the data

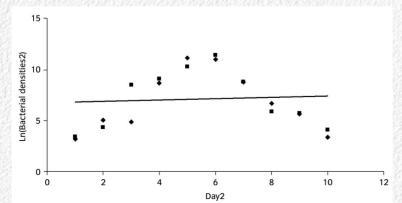
Use continuous variables when...

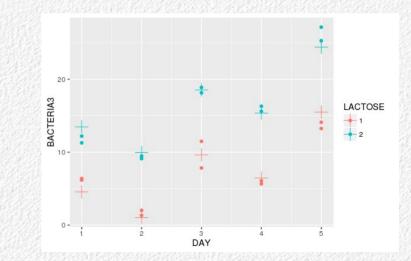
- There is good reason (supported by graphs) to expect a linear relationship
- Replication at each level would be low or absent if treated as a categorical grouping variable
- The question is appropriate (is there an increase or decrease over time?)
- A predictive equation is needed



Use categorical variables when...

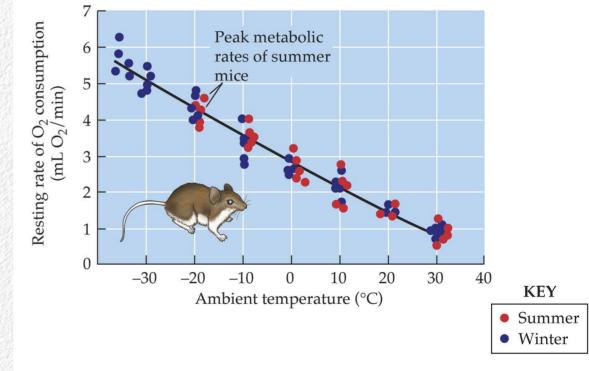
- A linear relationship is not evident, such that the poor fit is a bigger problem than the loss of df
- Replication at each level sufficient
- A predictive regression equation is not needed
 - Can use orthogonal polynomials to test for trends





What's the model?

(*a*) Acclimatization of peak metabolic rate without insulatory acclimatization in deer mice



Response variable? Continuous predictor? Categorical predictor? Which would be significant?