
  

Mixing variable types

Analysis of Covariance (ANCOVA)



  

Mixing variable types
● Before you learned about the GLM, ANOVA and regression 

seemed to be distinct approaches
– ANOVA for grouped data
– Regression for numeric predictors

● Now that you know ANOVA and regression are the same thing, 
why not mix variable types?

● What happens when you include categorical variable and a 
numeric variable together in a GLM?



  

Generality of GLM



  

Graphs and equations
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Three reasons to do ANCOVA
● Experimentally interesting question is the regression line, but we 

need to account for a categorical variable (block)
– Example: fat vs. weight, accounting for sex

● Experimentally interesting question is the comparison of means, but 
we need to reduce the noise to increase effect sizes
– Example: leprosy bacteria, accounting for initial bacterial density

● Experimentally interesting question is the comparison of means, but 
we need to adjust the means to account for the effect of the covariate
– Example: comparing wing chords between sexes of birds, adjusting for sex 

differences in mass



  

Blocking on a categorical variable
● The regression question is the interesting one, but there are 

groups in the data
– Sexes
– Age classes
– Location samples are housed (greenhouse, chamber)

● For the regression to properly represent the numeric 
relationship between predictor and response, the grouping 
needs to be accounted for

● Example: fat mass/body mass relationship



  

Fat mass vs. body mass relationship for a 
sample of people

Not a significant relationship 
between fat and weight

What’s wrong with this 
picture?

Analysis of Variance Table
Response: FAT
          Df  Sum Sq Mean Sq F value Pr(>F)
WEIGHT     1   1.328  1.3282   0.104  0.751
Residuals 17 217.093 12.7702 



  

The sexes seem to have a similar fat vs. weight relationship, but women 
have higher fat percentages at a given weight
Model is FAT ~ WEIGHT + SEX



  

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.96228    2.41021   7.038 2.80e-06 ***
WEIGHT       0.21715    0.03724   5.831 2.56e-05 ***
SEXMale     -7.90375    0.95337  -8.290 3.48e-07 ***

● What does the intercept 
mean?

● What is the male coefficient?
● Is the slope the same or 

different for males and 
females?

FAT=16.96+0.217×WEIGHT−7.904×Male



  

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.96228    2.41021   7.038 2.80e-06 ***
WEIGHT       0.21715    0.03724   5.831 2.56e-05 ***
SEXMale     -7.90375    0.95337  -8.290 3.48e-07 ***

Intercept = 16.97

Slope = 0.217

Male = -7.9 FAT=16.96+0.217×WEIGHT−7.90×Male

FAT female=16.96+0.217×WEIGHT−7.90×0
FAT female=16.96+0.217×WEIGHT

FAT male=16.96+0.217×WEIGHT−7.90×1
FAT male=9.06+0.217×WEIGHT

Slope is the same for both sexes
Intercepts are different
The SEXMale coefficient is the vertical distance between 
the lines at a given weight



  

ANOVA tableAnova Table (Type II tests)

Response: FAT
           Sum Sq Df F value    Pr(>F)
WEIGHT     87.105  1  33.996 2.556e-05 ***
SEX       176.098  1  68.729 3.482e-07 ***
Residuals  40.995 16

Test of fat vs. weight 
relationship, allowing for sex 
differences in intercept

Accounting for the 
different groupings in 
the data



  

Lack of independence of predictors
● Sex and weight are not orthogonal = not independent

– The numeric variable is different on average between the categories → 
sexes differ in mean weight

● r
2
 = 0.40, equivalent to correlation of 0.63

● This means that:
– Type II and Type I SS will be different
– Order of entry of sex and weight will 

matter in Type I
● Solution: either enter the nuisance first, 

or use Type II



  

Classic ANCOVA
● Question of interest is comparison of group means
● But, there is a numeric variable that is a nuisance = a covariate
● Include the covariate in the model to:

– Account for random variation caused by the covariate → statistical 
elimination, increase effect size of the treatment variable

– Make comparisons between the covariate-adjusted means – 
equivalent to setting the groups to the same value of the covariate



  

Cleaning up noisy data – leprosy experiment

● Leprosy caused by bacteria
● Testing effects of three different 

treatments (levels 1, 2, 3)
● Amount of bacteria after 

treatment is partly due to initial 
bacteria levels, before treatment

● We're asking: is there an effect of 
treatment, once initial bacteria 
levels are accounted for?



  

Statistically eliminating BACBEF from the 
test of treatment on BACAFTER

No adjustment for BACBEF

Analysis of Variance Table

Response: BACAFTER

          Df Sum Sq Mean Sq F value Pr(>F)

TREATMT    2 155.81  77.904  2.3502 0.1146

Residuals 27 894.99  33.148 

Analysis of Variance Table

Response: BACAFTER

          Df Sum Sq Mean Sq F value   Pr(>F)   
 

BACBEF     1 587.50  587.50 40.1988 1.03e-06

TREATMT    2  83.31   41.66  2.8502    0.076  

Residuals 26 379.99   14.61 

With BACBEF accounted for



  

Making covariate-adjusted comparisons
● Good examples come from study of shapes and sizes or organisms = morphometrics
● In a species of bird we are studying, females have bigger wing chords
● But, the sexes are also different in mass – males are heavier
● Is the wing difference really just a size difference (i.e. a difference in mass)?
● If the sexes were the same mass, what would the difference in wing chord be?



  

The goal of the analysis
● We will fit two parallel lines through the data

– Same slope
– Different intercepts

● We will use the regressions to 
find the wing chord for each 
sex at a common mass 
(called the 
least squares means)



  

Fitted model R2 = 0.82

Males: Wing = 

1.34 – 2.76 (1) + 0.63 Mass

-1.42 + 0.63 Mass

Females: Wing =

1.34 – 2.76 (0) + 0.63 Mass

1.34 + 0.63 Mass

Slope is the same for both sexes

The coefficient for Male is the difference 
between the lines at any point along the x-axis

-2 .7 6

-2 .7 6

-2 .7 6



  

Fitted model
● The test of Sex (dummy-

coded) is based on 
mass-adjusted means
– Vertical difference 

between the parallel lines
– The SexMale coefficient

● Intercept is the mean 
wing chord for females 
that weigh 0 g

Call:

lm(formula = Wing ~ Mass + Sex, data = birds)

Residuals:

     Min       1Q   Median       3Q      Max 

-1.14063 -0.31533  0.04671  0.30280  1.47952 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  1.34656    0.85452   1.576    0.118    

Mass         0.63055    0.04697  13.423   <2e-16 ***

SexMale     -2.76222    0.12970 -21.297   <2e-16 ***

---

Residual standard error: 0.5011 on 97 degrees of freedom

Multiple R-squared:  0.8238,    Adjusted R-squared:  
0.8202 

F-statistic: 226.8 on 2 and 97 DF,  p-value: < 2.2e-16



  

ANOVA tables
● Note that when Mass is 

entered first it has very low SS
● Type I SS assigns confounded 

variation to the first variable 
entered
– The examples we’ve seen 

assign more SS when a 
variable is entered first

– Here Mass gets a higher SS if 
it’s entered second

● What happened here?

Analysis of Variance Table

Response: Wing

          Df  Sum Sq Mean Sq  F value Pr(>F)    

Mass       1   0.004   0.004   0.0155 0.9013    

Sex        1 113.879 113.879 453.5571 <2e-16

Residuals 97  24.355   0.251      

Anova Table (Type II tests)

Response: Wing

           Sum Sq Df F value    Pr(>F)

Mass       45.241  1  180.19 < 2.2e-16

Sex       113.879  1  453.56 < 2.2e-16

Residuals  24.355 97                  

Type I SS



  

Type I SS – mass explains very little without sex

First →

Second →



  

Estimating mass-adjusted mean wing chord
● It is very important to base your biological interpretations on what the 

statistical analysis is actually testing
● If we are testing mass-adjusted means, then mass-adjusted (least squares) 

means should be interpreted
● Obtained by predicting the mean of the response variable for each category 

at a selected value of the covariate
– Usually done at the covariate mean – the location of minimum SE
– The difference in LS means is the same at any mass, as long as the same mass is 

used for both sexes
● May be closer together than the actual means or further apart depending 

on the data



  

Least-squares means
Vertical distance between the lines is a mass-adjusted measure of difference in 
wing chord
Predicted values for each sex at the same mass gives “least squares means”

LS mean ♀

LS mean ♂

Mean mass = 19

Males: Mass adjusted mean wing chord

1.34 – 2.76 (1) + 0.63 Mass

-1.42 + 0.63 (19) = 10.55

Females: Mass adjusted mean wing chord

1.34 – 2.76 (0) + 0.63 Mass

1.34 + 0.63 (19) =  13.31



  

Why predict LS means at the mean of x?
● Lines are parallel, so 

vertical distance is the 
same at any mass

● But, standard errors 
smaller near he 
middle of the data

● At mean of mass they 
will be as small as 
possible for both 
sexes at once



  

LS means are not always more different than 
raw means

● In this first example, there is more difference between sexes 
when mass is accounted for

● But, accounting for a significant covariate could:
– Enhance the difference between sexes
– Reduce difference between sexes
– Make it impossible to tell if there is a difference or not



  

When accounting for the covariate enhances 
differences

There is a difference in shape, and size is obscuring it

Wing: Females > Males, Mass: Females < Males



  

When accounting for the covariate reduces 
differences

The difference in wing chord is in part due to a difference in size
Size is making the shape difference look bigger than it really is

Wing: Females > Males, Mass: Females > Males



  

When mass and sex are not statistically 
distinguishable

Sex is no longer significant, because a single line fits nearly as well as two parallel lines
Conclude that the difference in wing shape is entirely due to differences in size 



  

Sometimes a variable can be treated as 
either continuous or categorical

● Some variables can either be expressed as numeric values, or can be 
expressed as categories

● Examples
– Change over time – days since treatment (numeric), day of the week after 

treatment (category)
– Dose – milligrams of dosage (numeric), or high, medium, or low dose (category)

● We could:
– Treat the variable as categorical and block on it
– Treat the variable as numeric and use it as a covariate

● How to choose?



  

Growth of bacterial cultures over time under 
two different lactose treatments

We can treat DAY as either categorical or numeric
Does it matter? If so, which is best?



  

Model R2 = 0.95

Day SS = 297.84
df = 1,17
F = 130.53

Model R2 = 0.95

Day SS = 298.37
df = 4,14
F = 27.29

If BACTERIA has a linear relationship with DAY...

Regression gives a bigger F, because of the 
greater residual df → greater power

Block ANOVA has smaller F, because of 4 model df → 
lower residual df
Lower power



  

If the pattern isn’t 
linear...

R2 = 0.95

R2 = 0.76

Means can stay close to the data

Straight line predicts poorly, can’t follow the 
day to day oscillations



  

Use continuous variables when...
● There is good reason (supported by graphs) to expect a linear 

relationship
● Replication at each level would be low or absent if treated as a 

categorical grouping variable
● The question is appropriate 

(is there an increase or 
decrease over time?)

● A predictive equation is 
needed



  

Use categorical variables when...
● A linear relationship is not evident, such that the poor fit is a 

bigger problem than the loss of df
● Replication at each level sufficient
● A predictive regression equation is not needed

– Can use orthogonal polynomials to 
test for trends



  

What's the model?

Response variable?
Continuous predictor?
Categorical predictor?
Which would be 
significant?
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