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Using models to understand our data

We use models to interpret our experimental data

- Coefficients estimate what the effects are

- p-values tell us if the effects are non-random

— Variation explained by the model tells us how strong the relationships are

We are responsible for making sure the models we use are appropriate for our data

Any model we use has limits — if we use it improperly we can’t expect good results
- We can only see the effects the model looks for
- p-values are only accurate if our data have the properties assumed by the model

The properties we need our data to have for a model to work properly are called model
assumptions

We often speak of assumptions as though the are a judgment about the data, but it’s
really a judgment about whether a model is appropriate for the data



Where assumptions come from

* General — conditions that need to be true for sample data to give
reliable answers about populations

Independent observations — need multiple, distinct measurements of response
Random sampling — samples must be representative of the population

» Specific — conditions derived from the structure of the model we use,
how the p-values are calculated

Linearity — straight line relationship between numeric predictors and numeric
responses

Equal variances
Normality



The trees are talking to each other!

Why is this a

it?
problem? How to solve it:



Independence of measured responses

Statistical definition of independence of events (i.e. responses):

If occurrence of one event has no effect on the probability of another event occurring, they are
independent events

Can fail to have independent events if:

- Experimental subjects influence one another

- Some uncontrolled, unmeasured variable is influencing observations
- Use of repeated measurements

Not the same as independence of variables
— Purpose of our experiments is to test if a response variable is affected by a predictor
- If a predictor affects the response, then the response variable is not independent of the predictor variable

- Independence of predictor and response is not assumed — detecting dependency between predictor and
response variables is the reason to do the study in the first place



Normality

* There is nothing wrong with data that are
not normally distributed

* But, GLM is based on the assumption
that data are distributed normally around
means (or around predicted values)

- p-values assume normality

- Non-normal distributions that are the same
may be okay with large n

— Non-normal distributions that are different
can be problematic even with large n,
because the mean becomes a misleading
measure of typical response

* We should avoid analyzing non-normal
data with GLM
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Equal variances

« \With different variances, but
the same mean, differences
In sample means will be
large more often

* |f we don’t account for this,
we would have more false
positives than we should

count
e 8

» Having equal variances _ eI

avoids this problem

Variable
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We have been testing normality wrong

Testing for normality is subject to an unfortunate tradeofft:

- Normality is a bigger issue for small sample sizes (why? Let’s
see...)

- Assumption tests have Ho: the assumption is met

- S0, detecting departures from normality is hardest with small
Sample Slzes o Dat::i.raiues

To test normality, we have been splitting the data into “

groups and test separately (why?) |
Splitting the data by groups reduces sample size, makes it 3 _
less likely we will detect departures from normality when 1

Istead, we will start using residuals to test assumptions " o



Distribution of residuals depends on the model
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Assumptions checked by inspecting residuals

* \We expect residuals to represent random variation
- Unpatterned
- Independent

 GLM requires them to be normally distributed

* We will (primarily) use graphical tools to assess:
- How well the model fits the data

- |If the data have the distribution needed to use the model to interpret
our experiment



Assumptions of GLM's

* General assumption (independence of errors, random
sampling)
 Model-based assumptions

- Normality = residuals are normally distributed around the predicted
values from a model

- Homogeneity = the variance in residuals is the same around all
predicted values from a model

- Linearity = there is a straight line relationship between response and
any numeric predictor used



Homogeneity of variances/normality for
residuals along regression lines

Homogeneous variances, normal Heterogeneous variances, normal
Y| distributions Y| distributions
X X
Homogeneous variances, non- Heterogeneous variances, non-
Y| normal distributions Y normal distributions

Fulimral
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Residuals versus the fitted values
(response is v1)
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What if you don’'t meet GLM assumptions?

* There are several possible treatments:
- Add a variable
- Add an interaction between variables
- Apply a transformation

* If none of those work, use a different analysis



Example: adding a variable

(contrived) data on blood concentration of a compound each hour after it
was administered

The data seems to be changing slope in a predictable way, but the line
iIsn't capturing this

Produces a pattern in the residuals (they are “temporally autocorrelated”)

Blood concentration over time Residuals of blood concentration over time




Accounting for the dependency

* Design your study to avoid dependencies
of errors if possible

* If not possible to avoid, can model the
dependency

Include a variable (sleep) that records if the
subject is awake or asleep

Include sleep status as a predictor

The dependency due to this variable is thus
accounted for

Residuals become unpatterned —
independent

resa

Residuals after accounting for time period

hour



Adding interactions to fix HOV
problems

e Lack of HOV can be due to an unmeasured
variable, or an interaction that isn't
accounted for

 Example here — increased variance from low
to high values of numeric predictor
- Including the group variable helps some

- Including an interaction between numeric
predictor and group accounts for the pattern

e What's left is HOV

Sponse

Numeric predictor

e W ———
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Model criticism

e Since the residuals depend on the model, we can'’t test our
assumptions first

- Have to fit a model, then test the residuals

 The model criticism process:
1) Fit a model to the data
2) Inspect/test the distribution of residuals
3) Add interactions, additional variables, or apply a transformation
4) Repeat as needed until you meet model assumptions

* Once you have a model that fits the data, only interpret that model



Example: bacterial growth experiment

* Example: test of effects of leucine, sucrose levels on bacterial growth
- Response = bacterial density
- Predictors = leucine level (3), sucrose level (4), day of sample (4)

- Factorial design used — all possible combinations (complete), equal
numbers (balanced)

* The simplest model for these data would be:

Density ~ Day + Sucrose + Leucine

 How well does the model fit the data?



Initial model

BOX 9.8 Analysing bacterial growth without interactions

General Linear Model

Word equation: DENSITY = DAY + SUCROSE + LEUCINE
[ ]
DAY, SUCROSE and LEUCINE are categorical F It?
H

Analysis of variance table for DENSTTY, using Adjusted SS for tests
Source DF  SeqSS Adj SS Adj MS F P

DAY 3 1.1570E+19 1.1570E+19  3.8566E+18 0.52 (.674
3 1.1895E+20  1.1895E+20  3.9651E+19  5.31  0.004
. 2 1.4762E+20  1.4762E+20 7.3811E+19  9.88  0.000 F I t t A d d I t t
Error 39 2.9136E+20  2.9136E+20 7.4709E+18 I rS S e p a a n I n e ra C I O n
Total 47 5.6951E+20
Residuals versus the fitted values
(response is DENSITY)
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Model with an interaction between sucrose and
leucine

BOX 9.9 Reanalysis of bacterial growth, including the interaction

General Linear Model

SE + LEUCINE + SUCROSE * LEUCINE Better fit 7 more Iinear, bUt
still heterogeneous variance

Analysis of variance table for nr v, using Adjusted 55 for tests

Source DF Seq SS Adj SS Adj MS F P

3 1.1570E+19 1.1570E+19 3.8566F+18 0.81 0.496
3 1.1895E+20 1.1895E+20 3.9651E+19 36 0.000
2 1.4762E+20 1.4762E+20 7.3811E+19 1!

75 0ot Next, try a transformation

¥ = DAY + SUCE

Word equation: pene

e and LE

5
5 =¥ LEUCINE 6 1.3479E+20 1.3479E+20 2.2464E+19 4.
Error 33 1.5658F+20 1.5658E+20 4.7447FE+18

Total 47 5.6951E+20
Residuals versus the fitted values
Normal Q-Q (response is DENSITY)
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Right-skewed data

Right-skewed variables are common in biology

Result when there are basements = minimum possible values (usually 0)
True for dimensions, ratios of numbers

Skewed ratio of two _ _
normal variables To can use a mathematical function
that changes the scale of the

variable to make it normally
distributed

680 90 120 150
biomass1

count

Called a transformation

120 =

a0 -

ol Has to shrink the upper tail, expand
e ' the lower tail = non-linear change,
change in the relative spacing
between data values

count
[=]

30 -




Common
transformations

count

of
Increasing
strength

— Square root
- Log

* Right-skewed distributions — in order /
\/

1.2
sqrt{ratio)

count

count

- Negative inverse

 Right-skewed variables often have \1/)(‘
variances that increase with the

mean, so transformation treats both
normality and HOV

count

-1.5 -1.0
-(1/ratio)



Log transformation can improve normality and
HOV

Log scale compresses large numbers, expands small numbers

count
N
count

In of each ratio
|

B, = ; : :
ratio

lcg::ralio] o
When an increase in mean — increase in variance, log
transformation often makes variances equal

0
In(Variable)



Log transforming to improve linearity

* We may also do a log transformation to
address a lack of linearity in the data

* Exponential relationships become linear
after log transforming the response
variable

Exponential on linear scale

Log(y)
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Log transform the dependent variable
bacterial density

BOX 9.10 Reanalysis of bacterial growth with transformation

General Linear Model

Word equation: LOGDE!

DAY, SUCROSE and LEUC

AY + SUC

Analysis of variance table for Lox

SE + LEU(

IE are categorical

EN, using Adjusted SS for tests

Good fit — linear, homogeneous

variances

Source DF SeqSS  AdjSS AdiMS F P
DAY 3 1.0461 1.0461 0.3487 1.38 0.265
c 3 20.8387 20.8387 6.9462 27.55 0.000 4 '
I 2 15.1785 15.1785 7.5892 30.10 0.000 I t p t th
SUCROSE * LEUCINE 6 1.1489  1.1489 0.1915 0.76  0.607 n e r re IS O n e 7
Error 33 8.3204  8.3204 0.2521
Total 47 46.5326 Residuals versus the fitted values
(response is LOGDEN)
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But, transformation changes your analysis

For illustration, focus on a comparison of leucine levels 1 and 3

Means of In(density) are:
Leucine 1 = 18.11
Leucine 3 = 21.26

Difference between them is 3.15
What does this mean?



Back-transformation

To convert from log scale back to the data units, we need to back-
transform the log-scale values

- Apply the inverse function

- For logs, this is the exp function = raise the base of the logs to the power of the
mean

e'81 = exp(18.11) = 73,294,784
€212 = gxp(21.26) = 1,710,411,805

Arithmetic means of density are:
Leucine 1 = 397,412,688, Leucine 2 = 4,313,368,750

The values used in the GLM are not arithmetic means — so, what are they?



Arithmetic means on a log scale are geometric
means on a linear scale

Arithmetic mean on a log scale Geometric mean on a log scale

)_(Zzlog(x)i > GMX:{I/H X;

Difference between arithmetic Ratio of GM's on a linear scaje

means on a Iog scale 21.26—18.11 _ _21.26  18.11 _
e Zor e 2534
21.26—18.11=3.15

GMLeucinel 2 1,710,411,805 :23 34

(what the GLM uses) GM | .cine 3 73,294,784

(Interpret this — geometric mean density at Leucine
level 1 is 23.34 times bigger than at Leucine level 2)



Linear on a log scale, exponential on a linear

14 140000
12 120000 |
10 o /./. 100000
m I'.l ull
= 8 - l”l/l/ | 80000
2 6 ./l/. > 60000 g I
- 4 [ | 40000 n
2 20000 -
0 v masinliaguuE
8 10 12 14 16 18 20 22 8 10 12 14 16 18 20 22
X X
A
yv=k10™
log (y)=1log(k)+mx Y

If log(y) has a straight line relationship with x, then y has an
exponential relationship with x

Meaning, y is related to x as an exponent of a base



Other data types require different
transformations

Example: proportions Before transformation  After transformation
and percentages

Data can be either right
or left skewed:

- Basement of O

count
count

— Celling of 1

water.logit

Data are fairly bell-shaped water
when mean is near 0.5

Can use a logit transformation, which lOgit(p) =In
IS the log odds ratio:

(11—919))

Best if done in a “generalized linear model” that uses the logit as a “link”
function — beyond the scope



30~

20~

Count

A distribution that transformation won't fix

0 10
Number of offspring

20

Lots of repeated data
values cause problems

Any transformation will
transform all to the same
value

For a distribution like this,
may be necessary to use
another approach, such as
a randomization test, or a
“zero-inflated” model



Why rely on graphical tools?

There are quantitative tests of these assumptions
Problem is...

- The larger your sample size, the greater power to detect even small
violations of assumptions

but....

- the larger your sample size, the less these violations of assumptions
matter

Quantitative tests of violations of assumptions are often no

improvement over careful, thoughtful inspection of graphs of
residuals



* Don't be too picky

- GLM's are robust to
minor violations of
assumptions =

Practical advice

- They become more
robust the larger
the sample size

Standardised residual
(=]
+
+
3

- If the graphical methods A & 5
look good, you shouldn't g
worry

* Focus on a small number of transformations that work in most cases

* If violation of assumptions is severe, use alternative methods (non-
parametric tests, randomization tests)

* If numeric covariates are used, try transforming them as well to fix
nonlinearities



What's the model?
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i*kcnm = Ex

20

CON = control
EX = mice allowed to voluntarily wheel run
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