
  

Checking model assumptions



  

Using models to understand our data
● We use models to interpret our experimental data

– Coefficients estimate what the effects are
– p-values tell us if the effects are non-random
– Variation explained by the model tells us how strong the relationships are

● We are responsible for making sure the models we use are appropriate for our data
● Any model we use has limits – if we use it improperly we can’t expect good results

– We can only see the effects the model looks for
– p-values are only accurate if our data have the properties assumed by the model

● The properties we need our data to have for a model to work properly are called model 
assumptions

● We often speak of assumptions as though the are a judgment about the data, but it’s 
really a judgment about whether a model is appropriate for the data



  

Where assumptions come from
● General – conditions that need to be true for sample data to give 

reliable answers about populations
– Independent observations – need multiple, distinct measurements of response
– Random sampling – samples must be representative of the population

● Specific – conditions derived from the structure of the model we use, 
how the p-values are calculated
– Linearity – straight line relationship between numeric predictors and numeric 

responses
– Equal variances
– Normality



  

The trees are talking to each other!

Why is this a 
problem? How to solve it?



  

Independence of measured responses
● Statistical definition of independence of events (i.e. responses):

If occurrence of one event has no effect on the probability of another event occurring, they are 
independent events

● Can fail to have independent events if:
– Experimental subjects influence one another
– Some uncontrolled, unmeasured variable is influencing observations
– Use of repeated measurements

● Not the same as independence of variables
– Purpose of our experiments is to test if a response variable is affected by a predictor
– If a predictor affects the response, then the response variable is not independent of the predictor variable
– Independence of predictor and response is not assumed – detecting dependency between predictor and 

response variables is the reason to do the study in the first place



  

Normality
● There is nothing wrong with data that are 

not normally distributed
● But, GLM is based on the assumption 

that data are distributed normally around 
means (or around predicted values)
– p-values assume normality
– Non-normal distributions that are the same 

may be okay with large n
– Non-normal distributions that are different 

can be problematic even with large n, 
because the mean becomes a misleading 
measure of typical response

● We should avoid analyzing non-normal 
data with GLM



  

Equal variances
● With different variances, but 

the same mean, differences 
in sample means will be 
large more often

● If we don’t account for this, 
we would have more false 
positives than we should

● Having equal variances 
avoids this problem



  

We have been testing normality wrong
● Testing for normality is subject to an unfortunate tradeoff:

– Normality is a bigger issue for small sample sizes (why? Let’s 
see...)

– Assumption tests have Ho: the assumption is met
– So, detecting departures from normality is hardest with small 

sample sizes
● To test normality, we have been splitting the data into 

groups and test separately (why?)
● Splitting the data by groups reduces sample size, makes it 

less likely we will detect departures from normality when 
they matter most

● Istead, we will start using residuals to test assumptions



  

Distribution of residuals depends on the model



  

Assumptions checked by inspecting residuals
● We expect residuals to represent random variation

– Unpatterned
– Independent

● GLM requires them to be normally distributed
● We will (primarily) use graphical tools to assess:

– How well the model fits the data
– If the data have the distribution needed to use the model to interpret 

our experiment



  

Assumptions of GLM's
● General assumption (independence of errors, random 

sampling)
● Model-based assumptions

– Normality = residuals are normally distributed around the predicted 
values from a model

– Homogeneity = the variance in residuals is the same around all 
predicted values from a model

– Linearity = there is a straight line relationship between response and 
any numeric predictor used



  

Homogeneity of variances/normality for 
residuals along regression lines
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normal distributions



  

Normality assumption met

Right-skewed residuals

Left-skewed residuals

Normality
Histogram of 

residuals
Normal 

probability plots



  

HOV, linearity, 
independence of 

data points
Good

Variance increases 
with predicted value

Variance decreases 
with predicted value

Not Good

Residual vs. fitted value plots



  

What if you don’t meet GLM assumptions?
● There are several possible treatments:

– Add a variable
– Add an interaction between variables
– Apply a transformation

● If none of those work, use a different analysis



  

Example: adding a variable
● (contrived) data on blood concentration of a compound each hour after it 

was administered
● The data seems to be changing slope in a predictable way, but the line 

isn't capturing this
● Produces a pattern in the residuals (they are “temporally autocorrelated”)



  

Accounting for the dependency
● Design your study to avoid dependencies 

of errors if possible
● If not possible to avoid, can model the 

dependency
– Include a variable (sleep) that records if the 

subject is awake or asleep
– Include sleep status as a predictor
– The dependency due to this variable is thus 

accounted for
– Residuals become unpatterned → 

independent



  

Adding interactions to fix HOV 
problems

● Lack of HOV can be due to an unmeasured 
variable, or an interaction that isn't 
accounted for

● Example here – increased variance from low 
to high values of numeric predictor
– Including the group variable helps some
– Including an interaction between numeric 

predictor and group accounts for the pattern
● What’s left is HOV



  

Model criticism
● Since the residuals depend on the model, we can’t test our 

assumptions first
– Have to fit a model, then test the residuals

● The model criticism process:
1)  Fit a model to the data
2)  Inspect/test the distribution of residuals
3)  Add interactions, additional variables, or apply a transformation
4)  Repeat as needed until you meet model assumptions

● Once you have a model that fits the data, only interpret that model



  

Example: bacterial growth experiment
● Example: test of effects of leucine, sucrose levels on bacterial growth

– Response = bacterial density
– Predictors = leucine level (3), sucrose level (4), day of sample (4)
– Factorial design used → all possible combinations (complete), equal 

numbers (balanced)
● The simplest model for these data would be:

Density ~ Day + Sucrose + Leucine

● How well does the model fit the data?



  

Initial model

Fit?

First step – add an interaction



  

Model with an interaction between sucrose and 
leucine

Better fit – more linear, but 
still heterogeneous variance

Next, try a transformation



  

Right-skewed data

Skewed ratio of two 
normal variables

=

Right-skewed variables are common in biology
Result when there are basements = minimum possible values (usually 0)
True for dimensions, ratios of numbers

To can use a mathematical function 
that changes the scale of the 
variable to make it normally 
distributed

Called a transformation

Has to shrink the upper tail, expand 
the lower tail = non-linear change, 
change in the relative spacing 
between data values



  

Common 
transformations

● Right-skewed distributions – in order 
of 
increasing 
strength
– Square root
– Log
– Negative inverse

● Right-skewed variables often have 
variances that increase with the 
mean, so transformation treats both 
normality and HOV

√
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-1/x



  

Log transformation can improve normality and 
HOV

ln of each ratio

Log scale compresses large numbers, expands small numbers
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When an increase in mean → increase in variance, log 
transformation often makes variances equal



  

Log transforming to improve linearity
● We may also do a log transformation to 

address a lack of linearity in the data
● Exponential relationships become linear 

after log transforming the response 
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Log transform the dependent variable 
(bacterial density)

Good fit – linear, homogeneous 
variances

Interpret this one!



  

But, transformation changes your analysis
● For illustration, focus on a comparison of leucine levels 1 and 3
● Means of ln(density) are: 

Leucine 1 = 18.11
Leucine 3 = 21.26

● Difference between them is 3.15
● What does this mean?



  

Back-transformation
● To convert from log scale back to the data units, we need to back-

transform the log-scale values
– Apply the inverse function
– For logs, this is the exp function = raise the base of the logs to the power of the 

mean
● e18.11 = exp(18.11) = 73,294,784

e21.26 = exp(21.26) =  1,710,411,805
● Arithmetic means of density are: 

Leucine 1 = 397,412,688, Leucine 2 = 4,313,368,750
● The values used in the GLM are not arithmetic means – so, what are they?



  

Arithmetic means on a log scale are geometric 
means on a linear scale

x̄=∑ log(x )i
n

GM x=
n√∏ x i

Arithmetic mean on a log scale

e21.26−18.11=e 21.26 /e18.11=23.34
21.26−18.11=3.15

Difference between arithmetic 
means on a log scale

Ratio of GM’s on a linear scale

Geometric mean on a log scale

(what the GLM uses)
GM Leucine 1

GM Leucine 3
=1,710,411,805

73,294,784
=23.34

(Interpret this – geometric mean density at Leucine 
level 1 is 23.34 times bigger than at Leucine level 2)



  

Linear on a log scale, exponential on a linear 
scale
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If log(y) has a straight line relationship with x, then y has an 
exponential relationship with x
Meaning, y is related to x as an exponent of a base

ŷ=k 10mx^log ( y )= log(k)+mx



  

Other data types require different 
transformations

● Example: proportions 
and percentages

● Data can be either right 
or left skewed:
– Basement of 0
– Ceiling of 1

● Data are fairly bell-shaped 
when mean is near 0.5

● Can use a logit transformation, which 
is the log odds ratio:

● Best if done in a “generalized linear model” that uses the logit as a “link” 
function – beyond the scope

Before transformation After transformation

logit ( p)=ln ( p
(1−p) )



  

A distribution that transformation won't fix

Lots of repeated data 
values cause problems

Any transformation will 
transform all to the same 
value

For a distribution like this, 
may be necessary to use 
another approach, such as 
a randomization test, or a 
“zero-inflated” model



  

Why rely on graphical tools?
● There are quantitative tests of these assumptions
● Problem is...

– The larger your sample size, the greater power to detect even small 
violations of assumptions
but....

– the larger your sample size, the less these violations of assumptions 
matter

● Quantitative tests of violations of assumptions are often no 
improvement over careful, thoughtful inspection of graphs of 
residuals



  

Practical advice
● Don't be too picky

– GLM's are robust to
minor violations of
assumptions

– They become more
robust the larger
the sample size

– If the graphical methods 
look good, you shouldn't 
worry

● Focus on a small number of transformations that work in most cases
● If violation of assumptions is severe, use alternative methods (non-

parametric tests, randomization tests)
● If numeric covariates are used, try transforming them as well to fix 

nonlinearities



  

What's the model?

CON = control
EX = mice allowed to voluntarily wheel run
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