
Representing an analog world on a
digital computer

Computers think different

Computers are digital, the world is
analog

● Analog = continuous quantities
– Infinite resolution

● Digital = discrete values
– Fixed resolution

● We live in an analog world
– Continuous variables for physical dimensions
– Shades of gray, gradients of color
– Continuous gradations in pitch and intensity of sound

● To represent these analog traits on a computer, we need to convert them to
a digital representation

● This can have important consequences to the accuracy of your data!

http://www.smithsonianmag.com/smart-news/electron-microscope-zooms-in-finds-life-on-life-on-life-30070438/?no-ist

Computers only understand 0 and 1
● Microprocessors are made up of

many (i.e. billion +) transistors,
which are like tiny switches

● Two possible states
– On = interpreted as a 1
– Off = interpreted as a 0

● A single transistor, set to
a 0 or a 1, is called a “bit”

● Everything on a computer has to
be represented by a series of bits

Interpreted as a 1

Interpreted as a 0

Encoding bits for storage
● Can't rely on constant electrical power for storage
● Pits in a surface – optical storage

– CD-ROM
– DVD

● Orientation of magnetic crystals – magnetic
media
– Hard drives
– Magnetic tape
– Flash media

Some analog traits
● Integer numbers (base 10)
● Continuous numbers
● Time
● Color
● Sound

● How do we represent these things in a computer that only
understands 0 and 1?

Decimal integers (base 10)
● We're used to decimal numbering

– Digits from 0 to 9
– To represent numbers bigger than 9, we string digits together
– Positions in a number are exponents of 10
– Consider 1,324

1000's place 100's place 10's place 1's place
 10

3
 10

2
 10

1
 10

0

 1 , 3 2 4

– 1,324 means we have 1 @ 10
3
, 3 @ 10

2
, 2 @ 10

1
 and 4 @ 10

0

– Add these together to get the decimal number

Binary numbers
● Only two digits possible – 0 or 1
● To represent numbers bigger than 1, need to string digits

together (just like with decimal numbers)
● With only 2 possible digits, each position is a power of 2
● What would 1000 be in binary?

 8's place 4's place 2's place 1's place
 2

3
 2

2
 2

1
 2

0

 1 , 0 0 0

Plickers...

Convert a binary number to decimal

Plickers...

Largest decimal number you can
represent with:

Bits Largest binary
number

Equivalent decimal number

1 1 1 = 1
2 11 2+1 = 3
3 111 4+2+1 = 7
4 1111 8+4+2+1 = 15
5 11111 16+8+4+2+1 = 31
6 111111 32+16+8+4+2+1 = 63
7 1111111 64+32+16+8+4+2+1 = 127
8 11111111 128+64+32+16+8+4+2+1 = 255

8 bits = 1 byte

1 byte can represent
numbers from
0 to 255

We can devote one bit to
the sign (+ or -), then we
can represent numbers
from
-128 to +127

Avoiding loss of digits
● Certain types of programs (e.g. databases), and

programming languages require you to identify your
variable type

● Need to pick a variable of the right kind, and with
enough bytes, so that your numbers will fit

● If you don't use the right variable type numbers can be
truncated (i.e. the answers will be wrong), or the
program could crash (i.e. you don't get an answer at all)

Example – adding two 8 bit unsigned
numbers

Addition of decimal
numbers

63
+255
318

00111111
+11111111
100111110

Too big for one byte, so the red 1 would be dropped

Without it, the number 00111110 is 62, not 318 –
wrong answer!

Addition of binary
numbers

Short and long integers
● Typically, integers are either:

– Short = 16 bit
● From -32,768 to 32,767

– Long = 32 bit
● From -2,147,483,648 to 2,147,483,647

● Why not always use long? Why not use 64 bit
(numbers into the quintillions)?

Continuous numbers
● Continuous numbers can take any value on the number line – fractions

of digits
● Precision of continuous numbers is arbitrary = infinite precision

– Can record them to whatever level we want
● Have to pick a level to represent the number on a computer
● Fixed precision = pick how many digits before and after a decimal place

– xx.xxx = two digits before, three after the decimal place
– Numbers bigger than 99.999 or smaller than 0.001 can’t be represented

● To avoid this, continuous numbers are represented as floating point

Floating point numbers
● Easiest to understand in comparison with fixed point decimal numbers

– Fixed point decimals are explicit about the location of the decimal
– If there are 5 sig figs, three after the decimal and two before, then a number

smaller than 0.001 or larger than 99.999 cannot be represented accurately
● Floating point numbers divide the decimal number into a mantissa (the

recorded, significant digits) and an exponent
● Because of this, 12345, 1.2345, 12345000, 0.00012345 can all be

represented with the same floating-point structure
– 12345 x 10

0
, 12345 x 10

-4
, 12345 x 10

3
, 12345 x 10

-8

The structure of floating point numbers
● A number stored as floating point double precision has:

– 1 sign bit (0 for positive, 1 for negative)
– 11 exponent bits (representing either positive or negative

exponents)
– 52 bits for the mantissa
– 64 bits total used

● Spreadsheets use double-precision floating point decimals
for all numbers, and store 15 significant (decimal) digits
– Numbers that appear to be integers have been rounded for display

Problems converting fractions to
decimals

● Converting fractions to decimals can be problematic even in
base 10 numbers
– Some fractions can be

represented perfectly with a
decimal number, others can’t

– We’re used to this with base 10,
but it can surprise us in base 2

● To see the problem, we’ll convert
some numbers from fractions to
decimals using a method that works in both base 10 and base 2

1
6≠0.16666667

1
5=0.2

Fractions as decimals – base 10
● Places are 10

-1
 (0.1), 10

-2
 (0.01), 10

-3
 (0.001) and so on

● Calculate one digit at a time
● The process to convert a fraction to

a decimal in base 10 is:
– Multiply the fraction by the base
– Calculate the integer

and remainder for result
– The integer is the digit for

that place
– Repeat the process with the

remainder to find the next digit, until
remainder is 0, or you run out of significant digits

1/5 as a decimal

1
5×10=105 =2 05First digit is 2

Remainder is 0, so decimal is 0.2
0.2 is exactly 1/5

Not all fractions can be exactly
represented as decimals

● Fractions with infinitely
repeating digits can only be
approximated as decimal
numbers

● To use the decimal, we have to
round it at a given decimal place

● The amount of error due to this
depends on the point at which
we do the rounding

● No biggie, we’re used to this
problem

1
6
×10=10

6
=1 4
6

First digit is 1

4
6
×10=40

6
=6 4

6
Second digit is 6

4
6
×10=40

6
=6 4

6Third digit is 6

All subsequent digits are 6, decimal is 0.166

0.167 is approximately 1/6
0.1666666666667 is closer to 1/6, but
0.167 ≠ 0.1666666666667 ≠ 1/6

1/6 as a decimal

Converting a fraction
to a binary decimal

● Places are 2
-1
 (0.5), 2

-2

(0.25), 2
-3
 (0.125) and so on

● Same process as with base
10, but multiply by the base
of 2

● 1/5 in binary is a repeating
decimal, no longer exact

● This causes some floating
point weirdness

1
5
×2=2

5
=0 2

5First digit is 0

2
5
×2= 4

5
=0 4

5Second digit is 0

4
5
×2=8

5
=1 3

5Third digit is 1

Binary decimal is 0.0011, so 1/5 can only
be approximated by a binary decimal (just
like 1/6 can only be approximated by a
base 10 decimal)

1/5 as a “binary decimal”

3
5
×2=6

5
=1 1
5Fourth digit is 1

1
5
×2=2

5
=0 2

5Fifth digit is 0

R
ep

ea
t

First a quick quiz (no calculators!):

1×(0.5−0.4−0.1)=?

1.000000000000010
+0.000000000000001

?

1.000000000000010
−0.000000000000001

?

Examples: floating point weirdness

Consequence of floating-point
representation in a computer

● If you are working at the limits of your computer's
precision, beware
– Best to pick units of measure that will not put you

near these limits
● Some numbers that can be exactly expressed as

decimals in base 10 aren’t exact in base 2
– Even simple calculations can give odd results, so

watch for problems!

Letters and symbols in binary
● ASCII = American Standard Code for Information Interchange

– This is sometimes called “plain text” - no formatting instructions included
● Numeric codes are assigned to 128 specified characters

– First 32 are control characters (things like carriage returns) – used to
control the hardware

– 33 to 47 are punctuation
– 48 to 57 are the numbers 0 to 9
– Separate codes for capital and lower case letters

● Programs that understand ASCII interpret these numeric codes as
letters, numbers, and punctuation

Some ASCII
symbols and

numbers

ASCII upper
and lower

case letters

Spelling “cat” in ASCII
Letter C A T
ASCII Decimal code: 67 65 84
Binary number: 01000011 01000001 01010100

Letter C a t
ASCII Decimal code: 67 97 116
Binary number: 01000011 01100001 01110100

Letter c a t
ASCII Decimal code: 99 97 116
Binary number: 01100011 01100001 01110100

Representing time in a computer
● Time passes continuously

– We can measure it to an arbitrary level of precision
– Currently the smallest time unit we can measure is the attosecond (10

-18
 s)

– Very small - an attosecond is to a second what a second is to 31.71 billion years
● All clocks can only measure time to a fixed resolution – computers are

no different
– Computers measure time by counting “ticks”

● Ticks are 100 nanoseconds = 1 x 10
-7
 seconds

– “System time” is the number of ticks that have elapsed since a selected starting
time point, called the “epoch”

System time on a computer
● Different computer operating systems use different epochs

– UNIX-derived systems (Linux, BSD) use 1 January 1970 00:00:00 UT (where UT is time
taken at the prime meridian) for the epoch

– Apple’s Mac OS X uses 1 January 2001 00:00:00 UT
– Windows NT and later Windows OS used 1 January 1601 00:00:00 UT

● Number of ticks before or after the epoch converted to time
– Positive numbers of ticks are times after the epoch, negative numbers would be times

previous to the epoch
● Resolution recorded is usually to the nearest millisecond
● Timekeeping by computers can drift over time, but can synchronize with atomic

clock signals, or “time servers” on their network that keep even more accurate
time

Problems representing time on
computers

● The Millennium Bug
– Programs that stored dates with only two numbers,

and always expected years to increase, were
expected to crash when the year went from 99 to 00

– Solution – reprogram to use four digit years (what
will those year 9,999 people think of us?)

● The Unix 2038 problem
– The Unix epoch is 1/1/1970 00:00:00 UTC
– If time is stored as a 32-bit signed integer, the

largest number of ticks that can be recorded is 2
31

 – 1
– This maximum will be reached in 2038
– Solution: reprogram to use 64-bit integers for times

Randomness
● Unless they break, computers are not capable of being spontaneous
● Can’t generate random numbers – but, can be programmed to produce

pseudo-random numbers
– Algorithms that produce unpatterned sequences of numbers
– Rely on a seed – a starting number specified by the programmer
– Given the same seed, the same set of pseudo-random numbers are produced
– If you don’t know the seed or the algorithm the pseudo-random numbers can be

used as though they are random
– If you change the seed a different set of pseudo-random numbers are produced
– System time is often used as the seed so that different sets are always produced

Two pseudo-random sequences with
the same seed

Change seed for sequence 2

Images

Consider this picture

What would it look
like if we only used 1
bit to represent it?

1 bit image
With 1 bit the only options
are 0 (black) and 1 (white)

Anything above a threshold
level of lightness will be
assigned to 1, and will
appear white

Anything below the
threshold will be assigned
a 0, and will appear black

Grayscale:
1 channel with 8 bits

8 bits (0 to 255) for a single channel

Interpreted as 256 shades of gray

Sufficient number for the transition
between shades of gray to appear
smooth

But, there are more than 256 possible
shades of gray, so some that are very
similar get lumped together into one –
some loss of detail in the image
compared to the actual, analog object

0

255

Representing color on a computer
● Color is determined

by the wavelength
of visible light –
continuous,
analog quantities

● Colors can be
represented in
computers using an appropriate color model

The RGB color model
● All colors are represented as

combinations of levels of intensity of
red, green, and blue light
– R, G, and B are the primary colors for light
– Primary colors for pigments

are red, yellow, and blue
● Computer displays have a color

channel for each primary color
– Can emit each color channel at

different intensities
– Mixes of intensities of the three primary colors of light

produce a large number of different colors on the screen

Color mixing
PigmentsLight

Primary colors of light
add together to make
other colors

Lack of all colors of
light = black

Presence of all colors =
white

Light is absorbed
by pigments, what
you see is what is
reflected

Lack of all colors of
pigment = white
Presence of all
colors of pigment =
black

Plickers...

24-bit color: an 8-bit channel each for R, G, and B

Red

Green

Blue

8 bit = 255 levels of
intensity for each color

Each color channel
alone looks like a
grayscale image

Plickers...

Mixing the RGB channels gives true
color

How many colors with 24 big color?

Each channel has 256 levels (0 to
255)

2563 different RGB combinations
→ 16,777,216 colors

Fine for human vision – way more
than the 1 million colors we see

May not be good enough for some
scientific applications (only uses
visible light, for example)

Colors as data - microarrays
● Measure expression across many

genes at once in two groups
● Genes that are expressing one

product have a green color, those
expressing another are red,
expressing both are yellow,
neither product are black

● Intensity and shade of color is
used to indicate amount of
expression

Colors as data – remote sensing
CSUSM MHHS

Visible light – look the same

NDVI – photosynthetic activity
CSUSM MHHS

Combination of red and near infrared they look different – why?

Resolution of an
image

● Color images will show more detail than
grayscale because adjacent pixels with the
same shade of gray may be different colors

● The size of the pixels is the spatial
resolution of an image (pixels per inch,
PPI)
– To look lifelike, and avoid losing detail, the

pixels in an image should not be individually
visible

– Images have fixed numbers of pixels – at a
large enough magnification you will see them

● The appropriate spatial resolution depends
on how much the image will be magnified

Representing sound on a computer
● Sound is a mechanical wave transmitted through the air (or a liquid or

solid) – continuous in time
● The tone we hear is

determined by the
wave form
– Frequency (cycles

per second)
determines pitch

– Amplitude determines volume
● Humans hear sounds between 20 Hz (low pitch) and 20,000 Hz (high

pitch), where Hz is cycles per second

Digital representation
of sound

● To digitize the analog sound,
samples of intensity are
taken over time

● Instead of a continuous
wave, digital sound is thus a
series of discrete intensities

● These intensities are passed
through a digital to analog
converter to produce sound

Digital sound fidelity –
sampling rate

● Sampling rate = how many times per
second the sound is sampled

● More times per second allows for closer
match to the wave form

● CD’s use 44.1 kHz, more than twice the
highest audible frequency

● These show the intensity measured
exactly at each sample – not really the
case

Digital sound fidelity – bit
depth

● Bit depth = how many bits are used to store intensity
● Need both + and - intensities, so one bit to the sign
● With 2 bits, can only represent +1,0,-1 as intensities
● With 4 bits, can represent +7 through -8
● With 8 bits, can represent +127 through -128
● With 16 bits (CD quality), can represent from 32767 to

-32768

● Best fidelity combines high bit depth and high
sampling rate, but this also leads to the largest file
sizes

Sound data in biology
● Animal vocalizations
● Ultrasound

sonograms
● Sensory physiology

File formats
● Two issues in choosing a file format for your

data
– Openness of standard
– File size vs. data integrity

Open vs. proprietary
● File formats are created by people, and are a form of

intellectual property
– Can be patented, copyrighted

● Proprietary formats = the specification for the file format is
privately owned
– May not be made public at all
– Format owner can limit how the file format can be used

● Open standards = file formats with specifications that are
made public, without use restrictions

Open file formats are best for scientific
work

● Only the owner of a proprietary file format can write
software to read the files (well)
– If the maker of the software goes out of business, your data may

become unreadable if it's in a proprietary format
● Open standards are sufficiently well documented that any

programmer can write a program to read and write the file
– Not dependent on one company for access to your own data

● Open standards are best for scientific work – your data will
always be available

Example: xls vs. xlsx
● xls is the old standard

– Proprietary → poorly documented, difficult for third parties to
open/write to

– Binary → need specialized tools to work with
● xlsx is the new standard

– Open standard → well documented, anyone can write programs to
open/write the file format

– ASCII text-based → no special tools needed to open and work with it
● Given the choice, better to use xlsx

File size issues
● Converting analog to digital representation can result in huge

amounts of digital data
– A single 8 megapixel, 24 bit image file in an uncompressed file

format is 24 MB
– A single audio CD with 80 minutes of uncompressed audio is 700

MB
– Each second of uncompressed high definition video is 118 MB, each

minute is 7.1 GB
● Storage space quickly becomes problematic – various

methods are used to compress these files

“Lossy” and “lossless” compression
● There are a couple of major approaches to

saving space for audio and images/video:
– Lossless: Retain all of the recorded information, but

represent it in a way that requires fewer binary digits
– Lossy: Throw out some of the recorded data

● Lossy compression can produce smaller file
sizes, but changes the data

A simple lossless compression scheme
● If you have a string of 1's and 0's that looks like this:

10000011111111000001110000000111111

● It's more compact to write it like this:

1@10@51@80@51@30@71@6

● This representation will save space to the extent that 1's and 0's
tend to repeat frequently – it's not effective if they alternate a lot

What is lost using lossy formats
● Good lossy compression only throws out the “unimportant”

parts of the data
● What is unimportant depends on the intended use of the file

– MP3 compressed sound files throw out frequencies that humans
can't hear

– jpeg throws out image data in a way that still looks okay when the
image is viewed at its intended magnification

– In both cases, “important” is defined by human aesthetics
– “Unimportant” data aesthetically may be very important scientifically

Lossy compression of an image – the
jpeg format

● Colors that are similar in a region
are assigned to the same color
– How similar they have to be is

determined by the quality setting used
● Pixels are then represented in a

condensed way (like the lossless
scheme shown before)

● The results can look fine if the image is not
enlarged, but the distortions are visible at
high magnification

Lossy compression in medical imaging
● Using jpeg compression

in medical imaging
changes the image

● The ability of a
radiologist to diagnose
from the image is
affected by image quality

More compression → less image quality
● Comparison of quality (Q)

vs. compression ratio
● Two different types of

compression
– Standard jpeg (blue)
– jpeg2000 (red)

● Quality goes down as
compression ratio goes up
for both

Lossy vs. lossless in digital data
● Lossless compression is less effective at saving storage

space, but doesn’t modify the original, measured data
– Should always be okay for scientific work

● Lossy compression may be okay, but you have to know how it
changes your data to decide
– mp3 throws out frequencies out of human audible range, which may

be a problem if you’re studying bat vocalization
– jpeg compression is designed to maintain the appearance of the

image on a web site, but for medical imaging or GIS data you want
each pixel to be accurate

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

