
Representing an analog world on a 
digital computer

Computers think different



Computers are digital, the world is 
analog

● Analog = continuous quantities
– Infinite resolution

● Digital = discrete values
– Fixed resolution

● We live in an analog world
– Continuous variables for physical dimensions
– Shades of gray, gradients of color
– Continuous gradations in pitch and intensity of sound

● To represent these analog traits on a computer, we need to convert them to 
a digital representation

● This can have important consequences to the accuracy of your data!

http://www.smithsonianmag.com/smart-news/electron-microscope-zooms-in-finds-life-on-life-on-life-30070438/?no-ist


Computers only understand 0 and 1
● Microprocessors are made up of 

many (i.e. billion +) transistors, 
which are like tiny switches

● Two possible states
– On = interpreted as a 1
– Off = interpreted as a 0

● A single transistor, set to 
a 0 or a 1, is called a “bit”

● Everything on a computer has to 
be represented by a series of bits

Interpreted as a 1

Interpreted as a 0



Encoding bits for storage
● Can't rely on constant electrical power for storage
● Pits in a surface – optical storage

– CD-ROM
– DVD

● Orientation of magnetic crystals –  magnetic 
media
– Hard drives
– Magnetic tape
– Flash media



Some analog traits
● Integer numbers (base 10)
● Continuous numbers
● Time
● Color
● Sound

● How do we represent these things in a computer that only 
understands 0 and 1?



Decimal integers (base 10)
● We're used to decimal numbering

– Digits from 0 to 9
– To represent numbers bigger than 9, we string digits together
– Positions in a number are exponents of 10
– Consider 1,324

1000's place      100's place           10's place             1's place
      10

3
                     10

2
                       10

1
                       10

0
 

     1 ,               3                  2                  4

– 1,324 means we have 1 @ 10
3
,  3 @ 10

2
, 2 @ 10

1
 and 4 @ 10

0

– Add these together to get the decimal number



Binary numbers
● Only two digits possible – 0 or 1
● To represent numbers bigger than 1, need to string digits 

together (just like with decimal numbers)
● With only 2 possible digits, each position is a power of 2
● What would 1000 be in binary?

   8's place               4's place                 2's place                  1's place
        2

3
                           2

2
                            2

1
                             2

0
 

     1 ,               0                  0                  0

Plickers...



Convert a binary number to decimal

Plickers...



Largest decimal number you can 
represent with:

Bits Largest binary 
number

Equivalent decimal number

1 1 1 =    1
2 11 2+1 =    3
3 111 4+2+1 =    7
4 1111 8+4+2+1 =   15
5 11111 16+8+4+2+1 =   31
6 111111 32+16+8+4+2+1 =   63
7 1111111 64+32+16+8+4+2+1 = 127
8 11111111 128+64+32+16+8+4+2+1 = 255

8 bits = 1 byte

1 byte can represent 
numbers from 
0 to 255

We can devote one bit to 
the sign (+ or -), then we 
can represent numbers 
from 
-128 to +127



Avoiding loss of digits
● Certain types of programs (e.g. databases), and 

programming languages require you to identify your 
variable type

● Need to pick a variable of the right kind, and with 
enough bytes, so that your numbers will fit

● If you don't use the right variable type numbers can be 
truncated (i.e. the answers will be wrong), or the 
program could crash (i.e. you don't get an answer at all)



Example – adding two 8 bit unsigned 
numbers

Addition of decimal 
numbers

63
+255
318

00111111
+11111111
100111110

Too big for one byte, so the red 1 would be dropped

Without it, the number 00111110 is 62, not 318 – 
wrong answer!

Addition of binary 
numbers



Short and long integers
● Typically, integers are either:

– Short = 16 bit
● From -32,768 to 32,767

– Long = 32 bit
● From -2,147,483,648 to 2,147,483,647

● Why not always use long? Why not use 64 bit 
(numbers into the quintillions)?



Continuous numbers
● Continuous numbers can take any value on the number line – fractions 

of digits
● Precision of continuous numbers is arbitrary = infinite precision

– Can record them to whatever level we want
● Have to pick a level to represent the number on a computer
● Fixed precision = pick how many digits before and after a decimal place

– xx.xxx = two digits before, three after the decimal place
– Numbers bigger than 99.999 or smaller than 0.001 can’t be represented

● To avoid this, continuous numbers are represented as floating point



Floating point numbers
● Easiest to understand in comparison with fixed point decimal numbers

– Fixed point decimals are explicit about the location of the decimal
– If there are 5 sig figs, three after the decimal and two before, then a number 

smaller than 0.001 or larger than 99.999 cannot be represented accurately
● Floating point numbers divide the decimal number into a mantissa (the 

recorded, significant digits) and an exponent
● Because of this, 12345, 1.2345, 12345000, 0.00012345 can all be 

represented with the same floating-point structure
– 12345 x 10

0
, 12345 x 10

-4
, 12345 x 10

3
, 12345 x 10

-8



The structure of floating point numbers
● A number stored as floating point double precision has:

– 1 sign bit (0 for positive, 1 for negative)
– 11 exponent bits (representing either positive or negative 

exponents)
– 52 bits for the mantissa
– 64 bits total used

● Spreadsheets use double-precision floating point decimals 
for all numbers, and store 15 significant (decimal) digits
– Numbers that appear to be integers have been rounded for display



Problems converting fractions to 
decimals

● Converting fractions to decimals can be problematic even in 
base 10 numbers
– Some fractions can be 

represented perfectly with a 
decimal number, others can’t

– We’re used to this with base 10, 
but it can surprise us in base 2

● To see the problem, we’ll convert 
some numbers from fractions to 
decimals using a method that works in both base 10 and base 2

1
6≠0.16666667

1
5=0.2



Fractions as decimals – base 10
● Places are 10

-1
 (0.1), 10

-2
 (0.01), 10

-3
 (0.001) and so on

● Calculate one digit at a time
● The process to convert a fraction to 

a decimal in base 10 is:
– Multiply the fraction by the base
– Calculate the integer 

and remainder for result
– The integer is the digit for 

that place
– Repeat the process with the 

remainder to find the next digit, until 
remainder is 0, or you run out of significant digits

1/5 as a decimal

1
5×10=105 =2 05First digit is 2

Remainder is 0, so decimal is 0.2
0.2 is exactly 1/5



Not all fractions can be exactly 
represented as decimals

● Fractions with infinitely 
repeating digits can only be 
approximated as decimal 
numbers

● To use the decimal, we have to 
round it at a given decimal place

● The amount of error due to this 
depends on the point at which 
we do the rounding

● No biggie, we’re used to this 
problem

1
6
×10=10

6
=1 4
6

First digit is 1

4
6
×10=40

6
=6 4

6
Second digit is 6

4
6
×10=40

6
=6 4

6Third digit is 6

All subsequent digits are 6, decimal is 0.166

0.167 is approximately 1/6
0.1666666666667 is closer to 1/6, but
0.167 ≠ 0.1666666666667 ≠ 1/6

1/6 as a decimal



Converting a fraction 
to a binary decimal

● Places are 2
-1
 (0.5), 2

-2
 

(0.25), 2
-3
 (0.125) and so on

● Same process as with base 
10, but multiply by the base 
of 2

● 1/5 in binary is a repeating 
decimal, no longer exact

● This causes some floating 
point weirdness

1
5
×2=2

5
=0 2

5First digit is 0

2
5
×2= 4

5
=0 4

5Second digit is 0

4
5
×2=8

5
=1 3

5Third digit is 1

Binary decimal is 0.0011, so 1/5 can only 
be approximated by a binary decimal (just 
like 1/6 can only be approximated by a 
base 10 decimal)

1/5 as a “binary decimal”

3
5
×2=6

5
=1 1
5Fourth digit is 1

1
5
×2=2

5
=0 2

5Fifth digit is 0

R
ep

ea
t



First a quick quiz (no calculators!):

1×(0.5−0.4−0.1)=?

1.000000000000010
+0.000000000000001

?

1.000000000000010
−0.000000000000001

?



Examples: floating point weirdness



Consequence of floating-point 
representation in a computer

● If you are working at the limits of your computer's 
precision, beware
– Best to pick units of measure that will not put you 

near these limits
● Some numbers that can be exactly expressed as 

decimals in base 10 aren’t exact in base 2
– Even simple calculations can give odd results, so 

watch for problems!



Letters and symbols in binary
● ASCII = American Standard Code for Information Interchange

– This is sometimes called “plain text” - no formatting instructions included
● Numeric codes are assigned to 128 specified characters

– First 32 are control characters (things like carriage returns) – used to 
control the hardware

– 33 to 47 are punctuation
– 48 to 57 are the numbers 0 to 9
– Separate codes for capital and lower case letters

● Programs that understand ASCII interpret these numeric codes as 
letters, numbers, and punctuation



Some ASCII 
symbols and 

numbers



ASCII upper 
and lower 

case letters



Spelling “cat” in ASCII
Letter C A T
ASCII Decimal code: 67 65 84
Binary number: 01000011 01000001 01010100

Letter C a t
ASCII Decimal code: 67 97 116
Binary number: 01000011 01100001 01110100

Letter c a t
ASCII Decimal code: 99 97 116
Binary number: 01100011 01100001 01110100



Representing time in a computer
● Time passes continuously

– We can measure it to an arbitrary level of precision
– Currently the smallest time unit we can measure is the attosecond (10

-18
 s)

– Very small - an attosecond is to a second what a second is to 31.71 billion years
● All clocks can only measure time to a fixed resolution – computers are 

no different
– Computers measure time by counting “ticks”

● Ticks are 100 nanoseconds = 1 x 10
-7
 seconds

– “System time” is the number of ticks that have elapsed since a selected starting 
time point, called the “epoch”



System time on a computer
● Different computer operating systems use different epochs

– UNIX-derived systems (Linux, BSD) use 1 January 1970 00:00:00 UT (where UT is time 
taken at the prime meridian) for the epoch

– Apple’s Mac OS X uses 1 January 2001 00:00:00 UT
– Windows NT and later Windows OS used 1 January 1601 00:00:00 UT

● Number of ticks before or after the epoch converted to time
– Positive numbers of ticks are times after the epoch, negative numbers would be times 

previous to the epoch
● Resolution recorded is usually to the nearest millisecond
● Timekeeping by computers can drift over time, but can synchronize with atomic 

clock signals, or “time servers” on their network that keep even more accurate 
time



Problems representing time on 
computers

● The Millennium Bug
– Programs that stored dates with only two numbers, 

and always expected years to increase, were 
expected to crash when the year went from 99 to 00

– Solution – reprogram to use four digit years (what 
will those year 9,999 people think of us?)

● The Unix 2038 problem
– The Unix epoch is 1/1/1970 00:00:00 UTC
– If time is stored as a 32-bit signed integer, the 

largest number of ticks that can be recorded is 2
31

 – 1
– This maximum will be reached in 2038
– Solution: reprogram to use 64-bit integers for times





Randomness
● Unless they break, computers are not capable of being spontaneous
● Can’t generate random numbers – but, can be programmed to produce 

pseudo-random numbers
– Algorithms that produce unpatterned sequences of numbers
– Rely on a seed – a starting number specified by the programmer
– Given the same seed, the same set of pseudo-random numbers are produced
– If you don’t know the seed or the algorithm the pseudo-random numbers can be 

used as though they are random
– If you change the seed a different set of pseudo-random numbers are produced
– System time is often used as the seed so that different sets are always produced



Two pseudo-random sequences with 
the same seed



Change seed for sequence 2



Images

Consider this picture

What would it look 
like if we only used 1 
bit to represent it?



1 bit image
With 1 bit the only options 
are 0 (black) and 1 (white)

Anything above a threshold 
level of lightness will be 
assigned to 1, and will 
appear white

Anything below the 
threshold will be assigned 
a 0, and will appear black



Grayscale: 
1 channel with 8 bits

8 bits (0 to 255) for a single channel

Interpreted as 256 shades of gray

Sufficient number for the transition 
between shades of gray to appear 
smooth

But, there are more than 256 possible 
shades of gray, so some that are very 
similar get lumped together into one – 
some loss of detail in the image 
compared to the actual, analog object

0

255



Representing color on a computer
● Color is determined 

by the wavelength 
of visible light – 
continuous, 
analog quantities

● Colors can be 
represented in 
computers using an appropriate color model



The RGB color model
● All colors are represented as 

combinations of levels of intensity of 
red, green, and blue light
– R, G, and B are the primary colors for light
– Primary colors for pigments 

are red, yellow, and blue
● Computer displays have a color 

channel for each primary color
– Can emit each color channel at 

different intensities
– Mixes of intensities of the three primary colors of light 

produce a large number of different colors on the screen



Color mixing
PigmentsLight

Primary colors of light 
add together to make 
other colors

Lack of all colors of 
light = black

Presence of all colors = 
white

Light is absorbed 
by pigments, what 
you see is what is 
reflected

Lack of all colors of 
pigment = white
Presence of all 
colors of pigment = 
black

Plickers...



24-bit color: an 8-bit channel each for R, G, and B

Red

Green

Blue

8 bit = 255 levels of 
intensity for each color

Each color channel 
alone looks like a 
grayscale image

Plickers...



Mixing the RGB channels gives true 
color

How many colors with 24 big color?

Each channel has 256 levels (0 to 
255)

2563 different RGB combinations 
→ 16,777,216 colors

Fine for human vision – way more 
than the 1 million colors we see

May not be good enough for some 
scientific applications (only uses 
visible light, for example)



Colors as data - microarrays
● Measure expression across many 

genes at once in two groups
● Genes that are expressing one 

product have a green color, those 
expressing another are red, 
expressing both are yellow, 
neither product are black

● Intensity and shade of color is 
used to indicate amount of 
expression



Colors as data – remote sensing
CSUSM MHHS

Visible light – look the same



NDVI – photosynthetic activity
CSUSM MHHS

Combination of red and near infrared they look different – why?



Resolution of an 
image

● Color images will show more detail than 
grayscale because adjacent pixels with the 
same shade of gray may be different colors

● The size of the pixels is the spatial 
resolution of an image (pixels per inch, 
PPI)
– To look lifelike, and avoid losing detail, the 

pixels in an image should not  be individually 
visible

– Images have fixed numbers of pixels – at a 
large enough magnification you will see them

● The appropriate spatial resolution depends 
on how much the image will be magnified



Representing sound on a computer
● Sound is a mechanical wave transmitted through the air (or a liquid or 

solid) – continuous in time
● The tone we hear is 

determined by the 
wave form
– Frequency (cycles 

per second) 
determines pitch

– Amplitude determines volume
● Humans hear sounds between 20 Hz (low pitch) and 20,000 Hz (high 

pitch), where Hz is cycles per second



Digital representation 
of sound

● To digitize the analog sound, 
samples of intensity are 
taken over time

● Instead of a continuous 
wave, digital sound is thus a 
series of discrete intensities

● These intensities are passed 
through a digital to analog 
converter to produce sound



Digital sound fidelity – 
sampling rate

● Sampling rate = how many times per 
second the sound is sampled

● More times per second allows for closer 
match to the wave form

● CD’s use 44.1 kHz, more than twice the 
highest audible frequency

● These show the intensity measured 
exactly at each sample – not really the 
case



Digital sound fidelity – bit 
depth

● Bit depth = how many bits are used to store intensity
● Need both + and - intensities, so one bit to the sign
● With 2 bits, can only represent +1,0,-1 as intensities
● With 4 bits, can represent +7 through -8
● With 8 bits, can represent +127 through -128
● With 16 bits (CD quality), can represent from 32767 to 

-32768

● Best fidelity combines high bit depth and high 
sampling rate, but this also leads to the largest file 
sizes



Sound data in biology
● Animal vocalizations
● Ultrasound 

sonograms
● Sensory physiology



File formats
● Two issues in choosing a file format for your 

data
– Openness of standard
– File size vs. data integrity



Open vs. proprietary
● File formats are created by people, and are a form of 

intellectual property
– Can be patented, copyrighted

● Proprietary formats = the specification for the file format is 
privately owned
– May not be made public at all
– Format owner can limit how the file format can be used

● Open standards = file formats with specifications that are 
made public, without use restrictions



Open file formats are best for scientific 
work

● Only the owner of a proprietary file format can write 
software to read the files (well)
– If the maker of the software goes out of business, your data may 

become unreadable if it's in a proprietary format
● Open standards are sufficiently well documented that any 

programmer can write a program to read and write the file
– Not dependent on one company for access to your own data

● Open standards are best for scientific work – your data will 
always be available



Example: xls vs. xlsx
● xls is the old standard

– Proprietary → poorly documented, difficult for third parties to 
open/write to

– Binary → need specialized tools to work with
● xlsx is the new standard

– Open standard → well documented, anyone can write programs to 
open/write the file format

– ASCII text-based → no special tools needed to open and work with it
● Given the choice, better to use xlsx



File size issues
● Converting analog to digital representation can result in huge 

amounts of digital data
– A single 8 megapixel, 24 bit image file in an uncompressed file 

format is 24 MB
– A single audio CD with 80 minutes of uncompressed audio is 700 

MB
– Each second of uncompressed high definition video is 118 MB, each 

minute is 7.1 GB
● Storage space quickly becomes problematic – various 

methods are used to compress these files



“Lossy” and “lossless” compression
● There are a couple of major approaches to 

saving space for audio and images/video:
– Lossless: Retain all of the recorded information, but 

represent it in a way that requires fewer binary digits
– Lossy: Throw out some of the recorded data

● Lossy compression can produce smaller file 
sizes, but changes the data



A simple lossless compression scheme
● If you have a string of 1's and 0's that looks like this:

10000011111111000001110000000111111

● It's more compact to write it like this:

1@10@51@80@51@30@71@6

● This representation will save space to the extent that 1's and 0's 
tend to repeat frequently – it's not effective if they alternate a lot 



What is lost using lossy formats
● Good lossy compression only throws out the “unimportant” 

parts of the data
● What is unimportant depends on the intended use of the file

– MP3 compressed sound files throw out frequencies that humans 
can't hear

– jpeg throws out image data in a way that still looks okay when the 
image is viewed at its intended magnification

– In both cases, “important” is defined by human aesthetics
– “Unimportant” data aesthetically may be very important scientifically



Lossy compression of an image – the 
jpeg format

● Colors that are similar in a region 
are assigned to the same color
– How similar they have to be is 

determined by the quality setting used
● Pixels are then represented in a 

condensed way (like the lossless 
scheme shown before)

● The results can look fine if the image is not 
enlarged, but the distortions are visible at 
high magnification



Lossy compression in medical imaging
● Using jpeg compression 

in medical imaging 
changes the image

● The ability of a 
radiologist to diagnose 
from the image is 
affected by image quality



More compression → less image quality
● Comparison of quality (Q) 

vs. compression ratio
● Two different types of 

compression
– Standard jpeg (blue)
– jpeg2000 (red)

● Quality goes down as 
compression ratio goes up 
for both



Lossy vs. lossless in digital data
● Lossless compression is less effective at saving storage 

space, but doesn’t modify the original, measured data
– Should always be okay for scientific work

● Lossy compression may be okay, but you have to know how it 
changes your data to decide
– mp3 throws out frequencies out of human audible range, which may 

be a problem if you’re studying bat vocalization
– jpeg compression is designed to maintain the appearance of the 

image on a web site, but for medical imaging or GIS data you want 
each pixel to be accurate
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