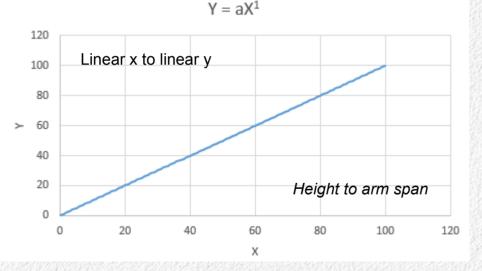
Visualizing data

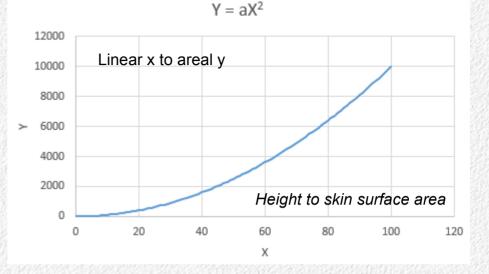
Why it's important How to do it well

Graphs: not just pretty pictures

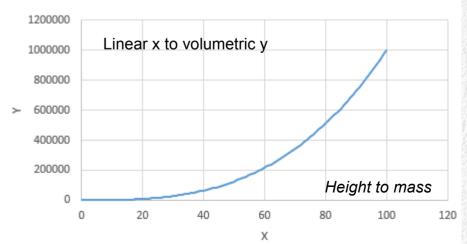

- Visualization is an important part of correct data analysis
 - Deriving meaning from data
 - Can support analysis
 - Can be a form of analysis
 - Especially important for large data sets
- Visualization is an important part of communicating results to others
 - We're visual creatures
 - A picture is worth a thousand words

Graphs as a form of analysis: finding the relationship between variables

- If we want to know how one variable changes in response to another we need to know how they're related
- You can use graphical methods to find the functional relationship between variables
 - Different functions are straight lines on plots with logarithmic axes
 - Setting axes to log scale can help you identify the underlying functional relationship


Three power function relationships between x and y

$$Y = a X^b$$



Most body parts scale relative to one another by a power function

- Exponent depends on the variables

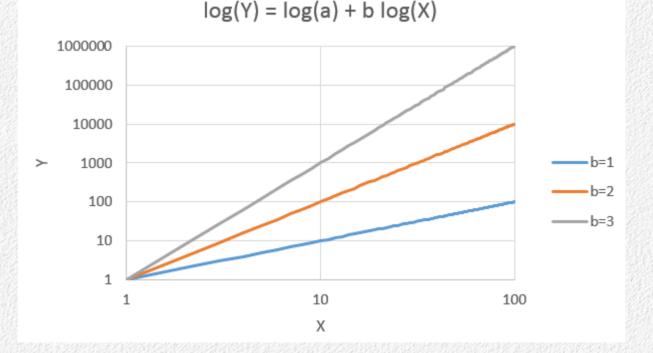
 $Y = aX^3$

Power functions – straight lines on log-log plots

 $Y = a X^b$

If the y-axis is log scale and the x-axis is log scale the relationship straightens out

$\log(Y) = \log(a) + b \log(X)$

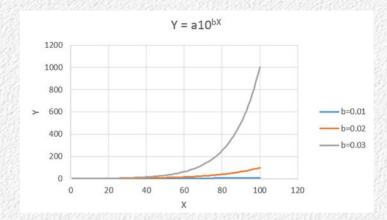

On a log scale has the form y = b + mx

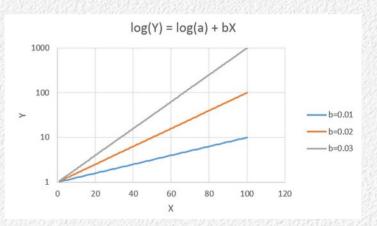
Log-log plots

Both axes on a log base 10 scale

→ each tick is a 10-fold increase (order of magnitude)

If data are a straight line on a log-log plot, then the relationship is a power function

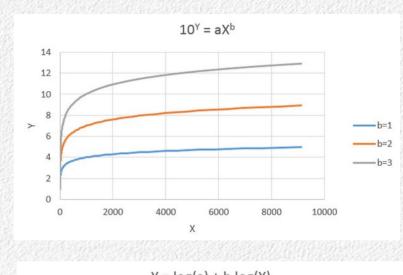

Exponential relationships

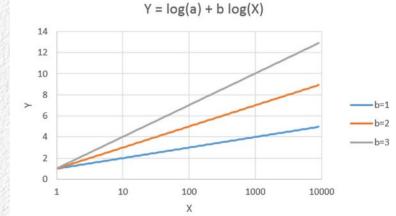

Constant multiplicative changes (population growth, radioactive decay)

$$Y = a \, 10^{bX}$$

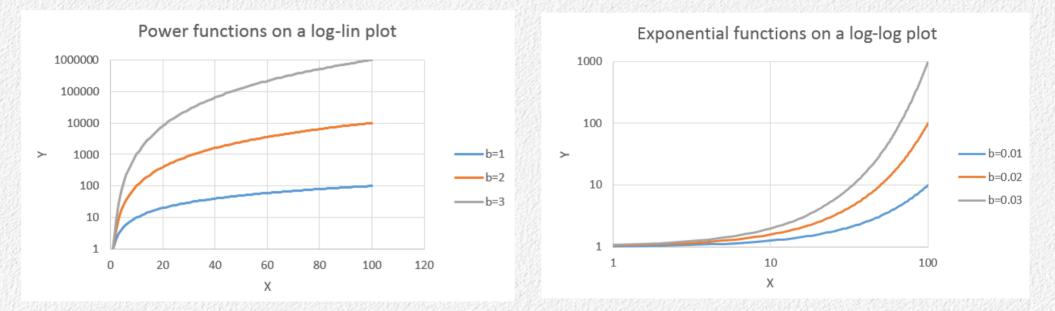
$$\log(Y) = \log(a) + bX$$

Straightens out when Y is on a log scale, X is linear


Logarithmic relationships


pH, fold changes for gene expression

$$10^{Y} = aX^{b}$$


$$Y = \log\left(a\right) + b\log\left(X\right)$$

Becomes a straight line when Y is on a linear scale, X is logarithmic

Wrong choice of axis scales \rightarrow curved lines

Thus, changing axis scale from linear to logarithmic can help you diagnose the functional relationship between variables

Once we know the relationship, we can have Excel give us the equation for the line

Plickers...

Graph types for data display

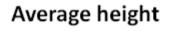
- Common types of graphs differ in:
 - Axis types numeric, categorical, or a mix of the two
 - Choice of graph type depends on the variable types of the data
 - Axis scaling conventions forcing axes to go to 0 or not
- Problem: the computer doesn't know what your variables are, only knows what you ask it to do
 - If you ask Excel to make the wrong graph type for your data, if it can it will
- Common graph types (i.e. those supported by Excel) cover most of the basic data display tasks

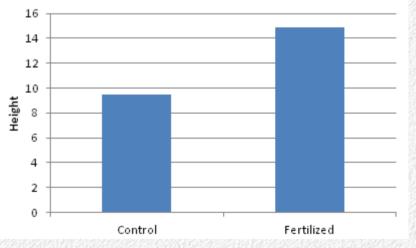
Excel's graph types

<u></u>	62957538428 <u>56</u> 2		
Graph type			Use
Column			A numeric variable plotted at levels of one or more categorical variables
Bar	Column	📑 Bar	A horizontal column chart
Line	<mark>ለረ</mark> Line		Values of a numeric variable displayed at the same levels of a categorical variable
Pie		色 Pie	Composition data = frequencies, proportions, percentages
Area	Marea		Line graph with the area below the lines shaded
Scatter		<u> </u> Scatter	Relationship between two numeric variables
Surface	🐻 Surface		A three dimensional surface, with categorical x and y, and numeric z
Bubble		S Bubble	A scatter plot with symbol size set to display a third variable
Radar	檢 Radar		Each numeric variable is a ray, each observation is plotted on each ray, with points connected
Histogram		ſħ.	Frequency distribution of a binned numeric variable
Box plot			Distribution statistics for a numeric variable
66. 68 6 7 7 6 7 7 7 8 8 7 5 7 7 1	15 724		

<u>301</u>	03 (962) (I I	91899.0639338
	A	В
1	Treatmen	Height
2	Control	11.5
3	Control	7.0
4	Control	10.9
5	Control	13.0
6	Control	7.2
7	Control	5.6
8	Control	9.0
9	Control	10.8
10	Control	9.7
11	Control	9.8
12	Fertilized	14.5
13	Fertilized	12.8
14	Fertilized	15.9
15	Fertilized	14.7
16	Fertilized	16.5
17	Fertilized	14.8
18	Fertilized	14.4
19	Fertilized	14.6
20	Fertilized	16.7
21	Fertilized	13.8
22		

Column chart


Pivot table for graphing


D	E
Average of Height	
Treatment 🛛 💽	Total
Control	9.442980293
Fertilized	14.88775842
Grand Total	12.16536935

One categorical variable (grouping)

One numeric variable (response)

Graph of pivot table data

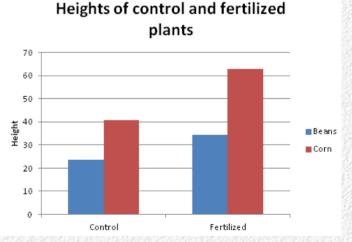
Bar height can be any numeric variable statistic (usually total or mean)

	А	В	С	
1	Treatmen	Plant	Height	
2	Control	Corn	41.7	
3	Control	Corn	37.4	
4	Control	Corn	41.8	
5	Control	Corn	44.6	
6	Control	Corn	37.2	
7	Control	Beans	24.2	
8	Control	Beans	18.9	
9	Control	Beans	25.5	
10	Control	Beans	22.8	
11	Control	Beans	26.8	
12	Fertilized	Corn	53.1	
13	Fertilized	Corn	60.5	
14	Fertilized	Corn	71.9	
15	Fertilized	Corn	64.9	
16	Fertilized	Corn	63.3	
17	Fertilized	Beans	32.7	
18	Fertilized	Beans	32.3	
19	Fertilized	Beans	39.3	
20	Fertilized	Beans	34.1	
21	Fertilized	Beans	32.9	
22	75 (20150 52-0702)			

Grouped column chart

Pivot table for graphing

E		n kanan berun 1930. F	G	Н	1991
Average of Heig	ht	Plant 🛛 🔽			
Treatment	-	Beans	Corn	Grand Total	
Control		23.64382879	40.56847979	32.10615429	
Fertilized		34.2673524	62.7506732	48.5090128	
Grand Total		28.9555906	51.6595765	40.30758355	


Two categorical variables (treatment group, plant type)

- Bars grouped/labeled on x-axis by first categorical variable

- Color coded by second categorical variable

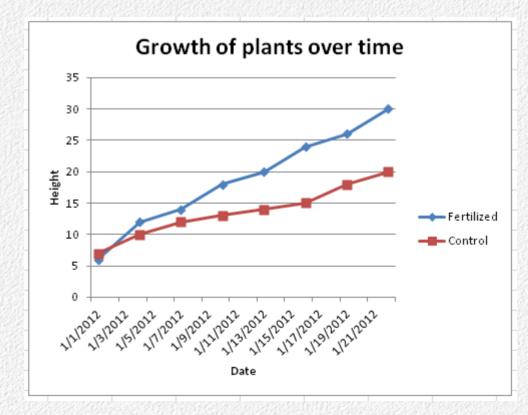
One numeric variable (response)

Graph of pivot table data

Like simple column chart, bar height usually total or mean

	А	В	С
1	Date	Fertilized	Control
2	1/1/2012	6	7
3	1/4/2012	12	10
4	1/7/2012	14	12
5	1/10/2012	18	13
6	1/13/2012	20	14
7	1/16/2012	24	15
8	1/19/2012	26	18
9	1/22/2012	30	20
10			

Categorical X axis, numeric Y


Each line is a series (can select either row or column series – columns here)

Each series uses the same x-axis = first column selected

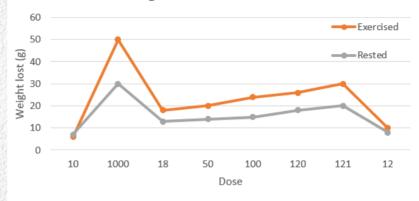
Order of values along the x-axis is the same as the order in the data table

Line charts

Graph

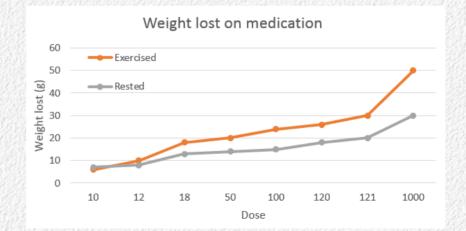
WARNING: Line charts are a can of worms

- Line charts plot the data as points and connect them with lines
 - Problem: the most conspicuous part of a line chart is the line, but the lines are not data

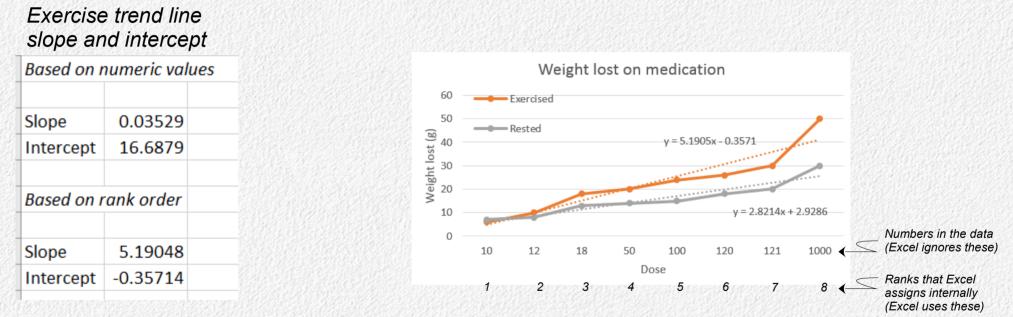


- If the points are not plotted the data are not on the graph
- The x-axis is categorical, even if you use a numeric variable for it the numbers are used as though they are text labels
 - Problems:
 - The ordering of the numbers along the x-axis can be wrong
 - The relative spacing of the numbers can be wrong
 - Excel lets you add trend lines, but the equations reported will (probably) be wrong

	А	В	С
1	Dose	Exercised	Rested
2	10	6	7
3	1000	50	30
4	18	18	13
5	50	20	14
6	100	24	15
7	120	26	18
8	121	30	20
9	12	10	8
111/11/1			1068069090306


Graph

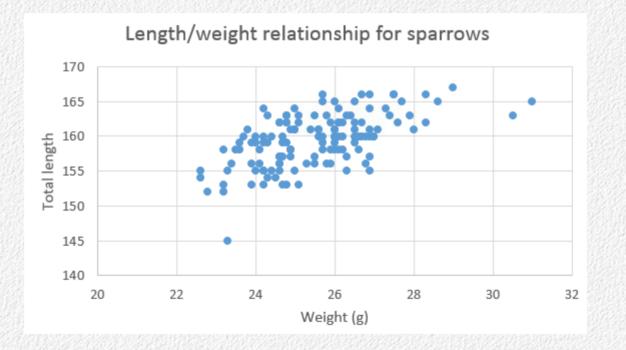
Weight lost on medication


X categories are not in order in the data sheet, so not in order on the graph

	А	В	С
1	Dose	Exercised	Rested
2	10	6	7
3	12	10	8
4	18	18	13
5	50	20	14
6	100	24	15
7	120	26	18
8	121	30	20
9	1000	50	30

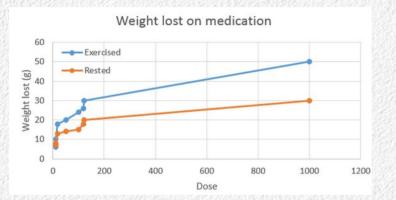
X categories in order now, but spacing between doses doesn't reflect numeric values

Excel allows you to fit a trend line on a line chart – but don't!

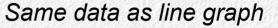


Since x-axis is categorical Excel ignores the x-axis numbers for the trend line

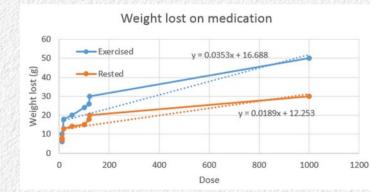
Instead, ranks assigned internally – 1 to the first, increasing by 1 to the last

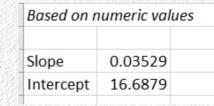

Slope and intercept from trend line are change in weight per unit change in rank, not per unit change in dose – in other words, they're wrong

Scatter plots – x and y both numeric



Best choice for displaying relationships between two numeric variables


If x is numeric use scatter plot with connecting lines instead of line graph

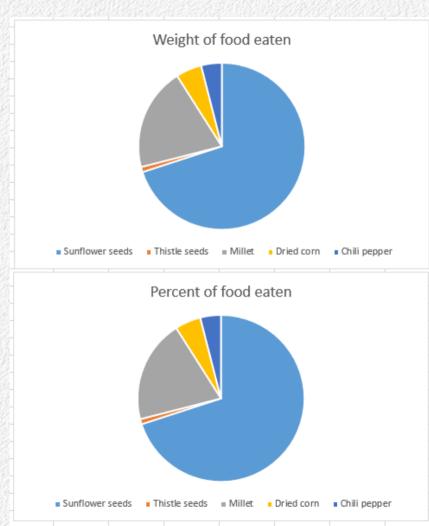

With lines connecting data points

Trend line is based on dose, not rank of dose, so slope and intercept are correct

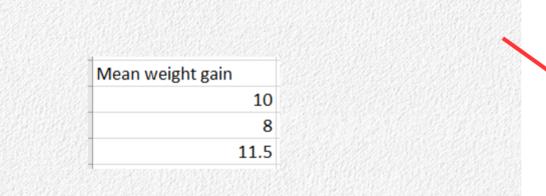
Composition data

- Composition data = data that represents values that are part of a whole
 - Yield of crops by type as part of total yield
 - Counts of observations by group as part of total number of observations
- Can be expressed in absolution number (kg, counts)
- Often expressed as proportions or percentages
- Good chart type choices:
 - Pie chart (meh)
 - Stacked column charts
 - Stacked area charts

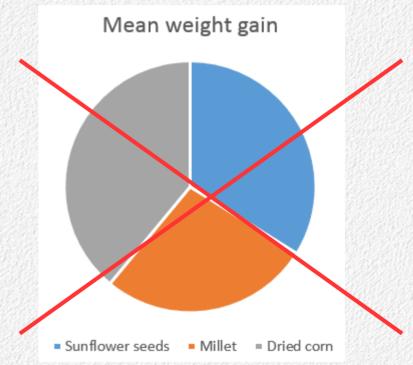
Graph of weight, percents


Pie chart

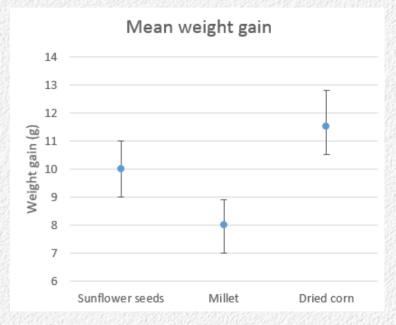
Data in Excel


	A	В	С
1	Food	Weight of food eaten	Percent of food eaten
2	Sunflower seeds	105.0	70%
3	Thistle seeds	1.5	1%
4	Millet	30.0	20%
5	Dried corn	7.5	5%
6	Chili pepper	6.0	4%
7			
8	Total	150	100%

Any variable used will be converted to proportions of the total \rightarrow set the size of the pie pieces

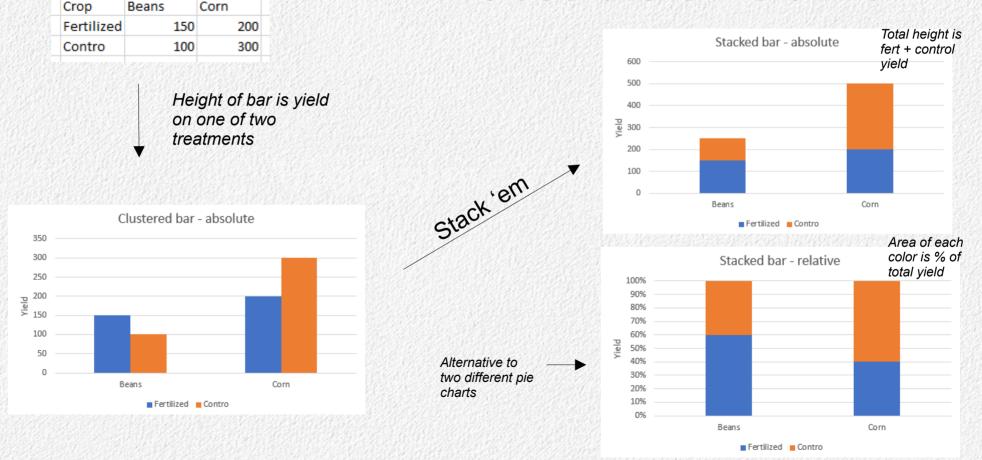

Only use pie charts for composition data!

Pie charts treat any data as composition data


Don't use pie charts to display means – means are not parts of wholes Better choice?

Better options for means by group

Bar chart with error bars



Mean symbols with error bars (in Excel done using line chart without lines) Total yield of beans and corn

Corn

Beans

Stacked column charts – absolute or relative

Stacked column charts can be used instead of pie charts

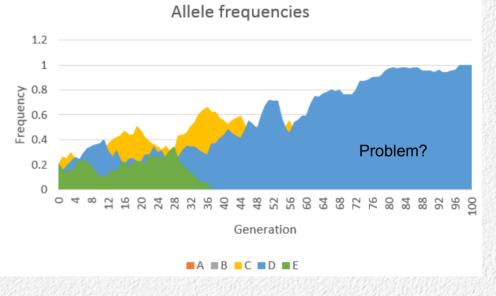
Like a pie chart:

- Relative amount of each food type can still be seen

Better than a pie chart:

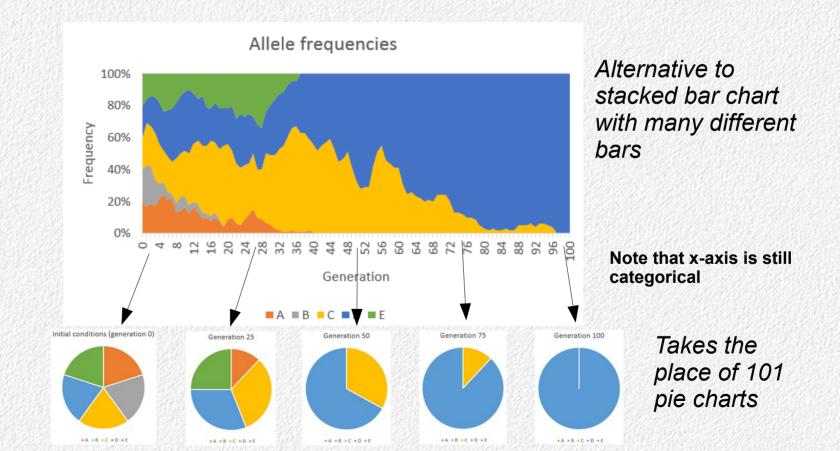
- Comparisons between groups are easier to make

- There is a numeric scale (y) that makes the amounts easier to judge

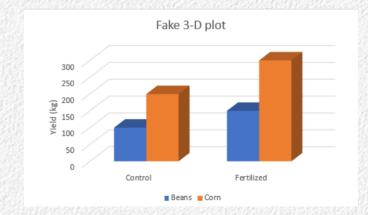

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% At house In forest Sunflower seeds Thistle seeds Millet Chili pepper Dried corn

Composition of food eaten

Stacked bar, percent scale


Area plots – space below lines filled

Line chart of allele frequencies


Area chart of allele frequencies

Composition data across many categories: stacked area plot

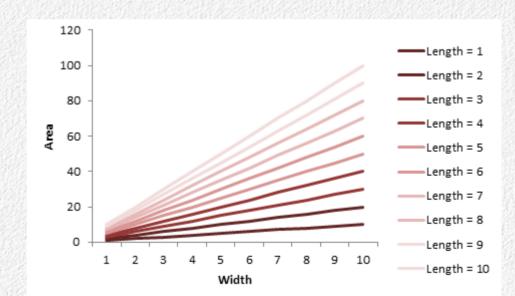
High order data sets

- Some data sets have many different variables
- Flat screens only have 2 dimensions two variables easy to display
- Adding variables means adding dimensions we don't have
 - Plot "slices" through the data
 - 3D graphs use depth cueing (perspective tricks)
 - Use symbols/lines

This nonsense is not a true 3D graph – not suitable for scientific work, avoid

Plotting slices across a third variable on a 2D graph

- Can group data based on levels of a third variable
- You can see the effect of the third (grouping) variable by comparing the groups
- Example: plotting the length, width, and area of rectangles as a series of lines


Slices through the data – lines are length columns

Z	А	В	C	D	Е	F	G	Н	T I	J	К	Ľ	46143
1			Leng	th									
2	Width		1	2	3	4	5	6	- 7	8	9	10	
3		1	1	2	З	4	5	6	7	8	9	10	
4		2	2	4	6	8	10	12	14	16	18	20	
5		3	3	6	9	12	15	18	21	24	27	30	
6		4	4	8	12	16	20	24	28	32	36	40	
7		5	5	10	15	20	25	30	35	40	45	50	
8		6	6	12	18	24	30	36	42	48	54	60	
9		7	- 7	14	21	28	35	42	49	56	63	70	
10		8	8	16	24	32	40	48	56	64	72	80	
11		9	9	18	27	36	45	54	63	72	81	90	
12		10	10	20	30	40	50	60	70	80	90	100	
13													

Data in Excel

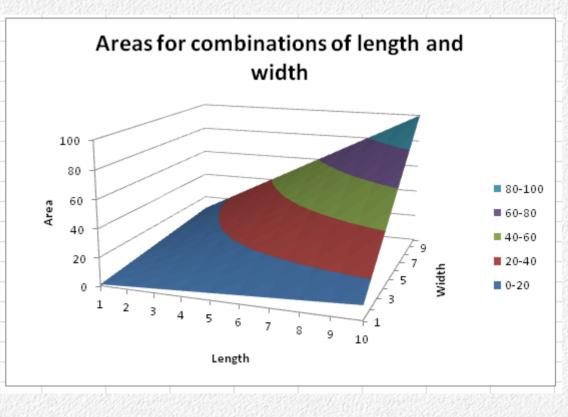
Length, width, and area of rectangles

Each length is a series, width on x-axis

Line colors selected to indicate lengths

Surface plot – plotting 3D on a 2D screen

Data in Excel

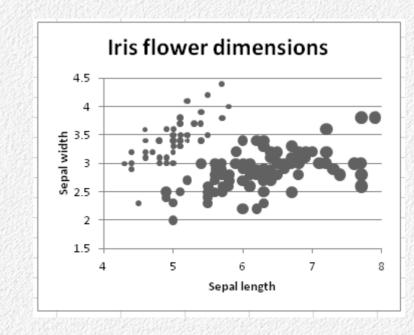

Z	A	В	C	D	E	F	G	Η		J	К	L
1			Leng	th								
2	Width		1	2	3	4	5	6	- 7	8	9	10
3		1	1	2	3	4	5	6	- 7	8	9	10
4		2	2	4	6	8	10	12	14	16	18	20
5		3	3	6	9	12	15	18	21	24	27	30
6		4	4	8	12	16	20	24	28	32	36	40
7		5	5	10	15	20	25	30	35	40	45	50
8		6	6	12	18	24	30	36	42	48	54	60
9		7	7	14	21	28	35	42	49	56	63	70
10		8	8	16	24	32	40	48	56	64	72	80
11		9	9	18	27	36	45	54	63	72	81	90
12		10	10	20	30	40	50	60	70	80	90	100
13												

Three dimensions, instead of 10 series

X and Y are row and column labels, treated as categorical

Z is numeric, in body of matrix

Graph of values in body of matrix

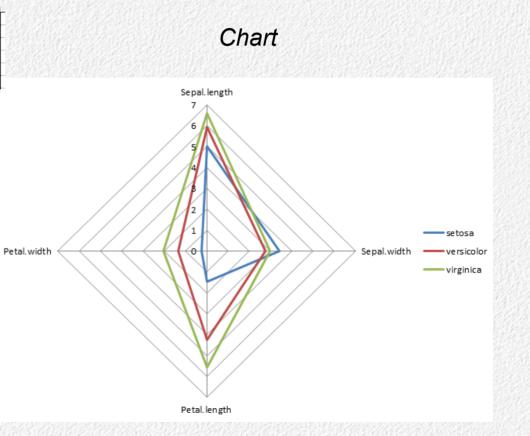

Symbol properties

- Can subset the data and display with:
 - Symbol size
 - Symbol color
 - Symbol type

	A	В	С	[
1	Sepal.Length	Sepal.Width	Petal.Length	
2	5.1	3.5	1.4	
3	4.9	3	1.4	
4	4.7	3.2	1.3	
5	4.6	3.1	1.5	
6	5	3.6	1.4	
7	5.4	3.9	1.7	
8	4.6	3.4	1.4	
9	5	3.4	1.5	
10	4.4	2.9	1.4	
11	4.9	3.1	1.5	
12	5.4	3.7	1.5	
13	4.8	3.4	1.6	
14	4.8	3	1.4	
15	4.3	3	1.1	
16	5.8	4	1.2	
17	5.7	4.4	1.5	
18	5.4	3.9	1.3	
19	5.1	3.5	1.4	
20	5.7	3.8	1.7	
21	5.1	3.8	1.5	
22	5.4	3.4	1.7	
23	5.1	3.7	1.5	
24	4.6	3.6	1	
	a contractor encountry on the second second			

Bubble chart

Chart – symbol size is proportional to petal length


Radar charts – multiple numeric axes

- Each ray is a different variable
- Each data point is plotted on each ray, with lines connecting

Radar plot with four axes

Data in Excel

	_	Data			
Species	•	Average - Sepal.Length	Average - Sepal.Width	Average - Petal.Length	Average - Petal.Width
setosa		5.006	3.428	1.462	0.246
versicolor		5.936	2.77	4.26	1.326
virginica		6.588	2.974	5.552	2.026
Total Result		5.8433333333333333	3.0573333333333333	3.758	1.1993333333333333

Bins, midpoints, and frequencies

3.125

3.375

3.625

3.875

4.125

4.375

4.625

4.875

5.125

5.375

5.625

5.875

6.125

6.375

6.625

6.875

7.125

7.375

7.625

7.875

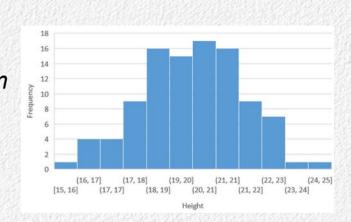
14

8

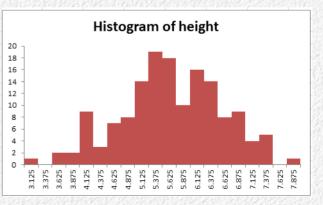
9

4

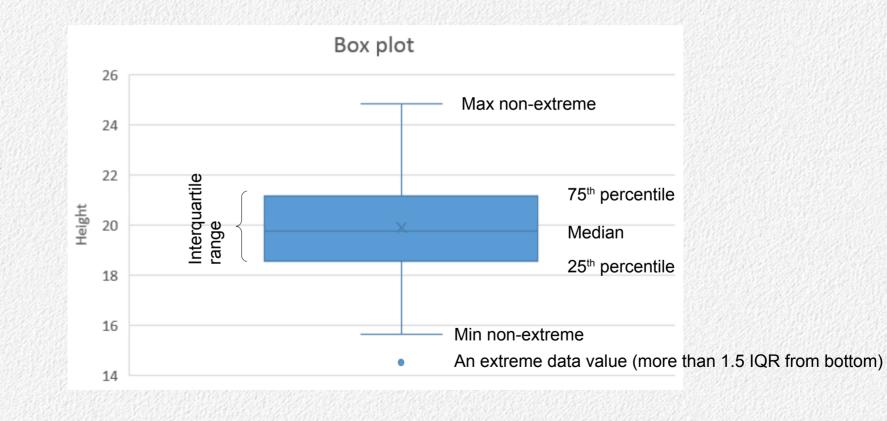
5


0

1


4	A	В	
1	Height		
2	5.32		1983 <u>9</u> 188989
	4.53		Bins
	4.41		3
	5.76		3.25
5	5.42		3.5
7	4.68		3.75
8	5.72		4
9	5.23		4.25
0.	7.67		4.5
1	4.89		4.75
2	3.81		5
.3	5.81		5.25
4	5.43		5.5
15	5.54		5.75
16	6.72		6
۲7	5.49		6.25
8	6.7		6.5
19	4.95		6.75
20	3.76		7
21	6.84		7.25
22	6.71		7.5
23	5.17		7.75

Midpoints Frequency 1 Built-in histogram 0 2 chart type 2 9 3 7 8 14 19 18 10 16


Histograms

Bar chart of freq's, no gap between bars

Box plots

Specialized graph types Excel does not support

- Statistical graphs
 - Residual plots
 - Biplots
- Heat maps
- Various 3D visualizations (3D scatter plots)
- For visualizations like these, need to use another package