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Likelihood

» Likelihood is a general approach to statistics
that can be used for:

- Estimating parameters, building confidence
Intervals

- Testing hypotheses
- Comparing hypotheses against one another

 Likelihood appears to be similar to probabillity,
but has a very different interpretation



Definition of likelihood

 Likelihood is a measure of support for a
particular estimated value (of a parameter, or
from a model), given a set of data

* We need to assume a particular statistical
distribution of deviations from the estimated
value (such as normal, binomial, etc.) to use the
approach

 \We then use the formula for the assumed
distribution to calculate the likelihood



Some nice features of likelihoods

e Likelihoods can be combined

- Data can be added as it becomes available, such as adding
observations until two treatment groups diverge

- Big no-no with hypothesis testing
* No “sampling” distributions

- Likelihoods of samples are just products of likelihoods of
iIndividual obserations

e Parameter estimates and confidence intervals
— *Maximum likelihood estimates”
- Even when analytical formulas aren't available



Likelihood and probability

* Probabilities treat parameters (u, o) as known,
and calculate the chances of observing data
values given the parameters — p(x; | U, 0)

 Likelihoods invert this — they treat the data as
known, and ask how likely a set of parameters
Is given the known data — L(y, 0 | X))



Probability and likelihood — single

observation
Probability Likelihood
plx;|u, o) L(w,0]x,)
Zj Given i =0 " Givenx,=0,0=1
Use a probability Likelihood of possible
distribution to represent a values of the mean given

‘random variable” observed x



Probability and likelihood — a
sample of data points

Probability

p(x|u,s.)

TTTTTTTT

Use a “sampling
distribution”, such as the t

Likelihood
H L(M , O | xi)

Likelihood of a sample is
the product of likelihoods
of data points



Likelihood functions

* Derived from probability distributions

» Used to model differences between hypothetical
values and observed data (residuals)

 Example: Normally distributed deviations

| -l¥Yy  Likelihood of parameters given a
L(M | x,-) = \/—2 e single data point - the normal
2mo probability distribution

| v»—u® Likelihood of parameters given all
dx 4= 1 6_5[ " the data — the product of all the
7 V2n0” likelihoods given each single data
point




Example of likelihood function

0.5
Given x=0,0=1
Likelihood ofuy=0 ———» (0.4
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Likelihood
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Likelihood of y=-2 —»
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Using likelihood for estimation

Most common use, well established

Given some data, what is the best estimate for the
mean, u?

s it Y X!
n

j s

How do we know we have the best estimate?

Maximum likelihood criterion: the parameter value
with the highest likelihood given the data is the best
estimate



Some data...

119 123 124 120 128 132 135

: : H 4 H— FH
f 125 130

The Data
123.67

119 123 124 126 128 132 135

126.90 - . : FH 4 H—
130.78 L SREE 130

125 .30

124 .86 u

126.96

135.61 119 123 124 126 128 132 135

.1.1942 ) } } IH_ i H— H
128.74 = poso
132.53 H

130.36
128.31
130.63

119 123 124 126 128 132 135

128 13 : : :]:2:5 i H— ];0:: : +:
12317 u

Infinite number of possible values of u —
which is best?



Estimating p

* The data are what we know

 The best estimate of y is not

* Need to specify a likelihood function to model
deviations of estimates from data points

e We'll use the normal distribution



Likelihood of hypothetical means
given the data
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To start:
Two
possible
means
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Symbols are likelihoods of either 121 or 130 given just one data point

at a time



Example: What is the likelihood of a
set of possible means given the data?

Likelinood of individual

data points
The Data Mean 121 Mean 130

123.67 0.08 0.03
126.90 0.03 0.07 98
130.78 0.00 0.10 L(121|data)= 3.4x10
125.30 0.06 0.05
124.86 0.06 0.04
126.96 0.03 0.08 19
135.61 0.00 0.04 ( | ): 7
e o o L(130|data)=1.12X10
1268.74 0.01 0.10
132.53 0.00 0.08
130.36 0.01 0.10
128.31 0.02 0.09 " = . ?
130.63 0.01 0.10 WhICh IS blgger'
128.13 0.02 0.09
12517 0.06 0.05

Mean 127.82

Std. Dev. J.85

Likelihood of each mean given all
of the data: multiply these
individual likelihoods together



Ln({Likelihood)

Ln(likelihood) changes the scale,
makes likelihoods additive

Log likelihoods of two different means given individual data points

In(L(121|data))= —63.79
* . - :-l .
*0
\
. In (L (130|data))= —43.68
Data

Loglik=—0.5n ln(2n)—0.5nln(02)— 21 > Z (xi_M>2
o




-Ln(likelihood) changes the
direction

-Log likelihoods of two different means given individual data points

=
L y

—In(L(121|data))= 63.79

P M —In( L(130|data))= 43.68

-Ln{Likelihood)
)

1 120 122 124 126 128 130 132 134 136 138

Data

Why? Convenience (we are bad at negative numbers, -In(L) has
some nice properties we'll meet later)

But, to find the maximum likelihood estimate, we need to find the
minimum -logLikelihood value



Likelihood of means given the
data

-LogLikelihood of Means Given All of the Data

80 -

75 -

70 -

E5 -

B0 -

-Ln(likelihood)

55 -

50 -

45 |

40

18 120 122 124 126 128 1?0 132 134 136 138

Possible means
121 130

Calculate -In(L) for a range of possible means

Maximum likelihood estimate at the minimum of this function



Calculations — comparing likelihoods
among possible means

Mean
atd. Dev.

The Data
123.67
126.90
130.78
125.30
124.86
126.96
135.61
119 .42
128.74
132.53
130.36
128.31
130.63
128.13
12517

127.82
3.95

Possible
means
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

Likelihood -Loglikelihood

3.79E-035
1.73E-031

1.98E-028
8.69E-026
1.43E-023
9.24E-022
2.26E-020
211E-019
7.24E-019
1.03E-018
3.38E-019
1.07E-019
8.20E-021

2.39E-022
2.67E-024
1.14E-026
1.86E-029
1.16E-032

78.8
70.8
63.8
a7.7
32.6
48 .4
45.2
43.0
41.7
41.4
42 .1
43.7
46.3
49.8
o4.3
39.7
66.2
73.9

Numerical solution — try
different possible
means, calculate
-logLikelihood for each

Pick the one with the
lowest -logLikelihood

Not an analytical
solution! Only
approximately correct
(but often good enuf)



Simplifying the likelihood function

 \We can drop any term that is a constant, or
doesn't depend on the parameter(s) being
estimated

 The values will be the same up to an additive
constant — shapes will be the same, maximum
will be at the same place

—0.5nIn(27)—0.5nIn(c?) - 1 D (x,—u)

. Vo
SO, this \_/

and this Il de gl 1
I Yy e _202 Z(xi_u>2

will give the same answer



~0.5nIn(27)-0.5nn(c”) - 1

20

0
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20
30
40
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-0

-100

Log-likelihood

| oLk
LogLik (dropped constants)

Fossible value af |

20

Same shapes, differ by a constant amount across the whole curve, both
identify the same best value for the estimate of u

2

Z (xi_u)z



Both the mean and standard
deviation can be estimated at once

 The likelihood function includes the standard
deviation

* \We can vary both the mean and the variance,
and select values of both that jointly maximize
the likelihood function



-Log likelihoods for combinations of

Possible
means
119
120
121
122
123
124
123
126
127
128
129
130
131
132
133
134
133
136

3.0

mean and standard deviations

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Possible standard deviations

3.8

3.9

4.0

4.1

42 43 44 45 46 4.7

4.8

4.9

5.0

107.3102.9 98.9

g93.4
81.2
70.7
61.8
24.6
49.1
45.2
43.0
424
43.6
46.4
20.8
37.0
64.7
4.2
83.3
a98.1

g9.9
78.9
68.6
60.3
33.6
48.4
447
42.7
422
43.2
45.8
230.0
33.7
63.0
71.9
82.3
943

86.8
76.0
66.8
59.0
32.6
47.8
44 4
42.4
41.9
42.9
45.4
493
54.7
61.5
69.8
19.6
90.9

95.4
g3.9
73.8
63.1
37.8
31.8
47.2
44.0
42.2
41.8
42.7
43.0
48.7
93.7
60.2
68.0
7.2
87.8

92.1
81.3
71.8
63.6
36.7
31.1
46.8
43.8
42.0
41.6
42.5
44.7
481
52.9
39.0
66.3
73.0
g3.0

g9.2
79.0
70.0
62.3
55.8
20.5
46.4
43.5
41.9
41.5
42.4
44 .4
47.7
92.2
a7.9
64.9
73.0
g2.4

86.5
76.9
68.4
61.1
54.9
49.9
46.1
434
41.8
41.5
42.2
44 .2
47.3
31.5
36.9
63.5
1.2
80.1

84.1
74.9
66.9
60.0
54 .2
49.4
45.8
432
41.8
41.4
422
44.0
46.9
51.0
36.1
62.3
69.6
78.0

81.8
13.2
53.6
59.0
93.5
49.0
45.5
43.1

41.7
41.4
42.1

43.8
46.6
50.4
93.3
61.2
68.1

76.1

79.8
71.6
G64.4
38.1
952.9
48.6
43.3
43.0
41.7
41.4
42.1

43.7
46.4
30.0
54.6
60.2
66.8
T4.4

-Ln(likelihood) for each combination
of mean and standard deviation

77.9
70.1
63.2
57.3
52.3
48.3
435.2
43.0
41.7
41.4
42.1

43.6
461
49.6
54.0
59.3
63.6
72.7

76.2
68.8
62.2
56.6
51.8
48.0
45.0
42.9
41.8
41.5
42.1

43.6
46.0
492
53.4
058.5
64.4
713

46 732 718 706 694 684
670 664 6534 B44 635 62.7
613 605 359.7 59.0 584 57.8
53.9 5353 548 543 539 335
514 531.0 50.7 504 501 4959
47.7 475 473 472 470 469
449 448 4486 447 447 447
429 429 429 43.0 43.0 431
41.8 419 41.9 420 421 422
415 416 1.7 418 41.9 420
421 421 422 42353 423 424
430 430 430 435 435 436
45.68 45.7 456 455 454 454
48.9 48.7 484 482 48.0 479
52.9 524 320 51.7 513 51.0
57.7 371 564 559 554 549
634 62.5 61.6 60.6 601 394
69.9 B68B.7 67.6 66.5 6335 646

67.4
62.0
a7.2
33.1

49.6
46.8
44.7
431

42.3
42.1

42.5
43.6
453
47.7
50.8
594.5
028.8
63.8

66.5
61.3
26.7
52.8
49.4
46.7
44.7
432
42.4
422
42.6
43.7
453
47.6
50.5
o54.1
28.3
63.1

65.7
60.7
263
92.5
49.3
46.7
44.7
43.3
42.5
42.3
42.7
43.7
453
47.5
50.3
93.7
27.7
62.4

Arithmetic mean = 127.82

Std. Dev. = 3.95



Estimating mean and standard
deviation

126



Curve fitting

* The predicted value from a curve is the average
of y expected for a given value of x

 WWe can calculate the likelihood of parameter
values given the residuals around the line that
they produce

* We will try this with the photosynthesis data
shortly...



DNA evidence

 Like fingerprints, but less subjective
- Genes are discrete
- Matches are either positive or negative
— No judgment calls
* Yet DNA evidence is still subject to statistical
uncertainty

- If matches are either positive or negative, why do
they talk about probabilities of a match?



Statistics and DNA evidence

* Probability statements in DNA cases involve
some pretty small probabilities

- EX. "“The chances that this sample belongs to
somebody other than the defendant is 100 billion to
one’

* What do statisticians mean when they say this?
 Where do these numbers come from?



Genes and alleles

* One copy from each parent of
our 23 chromosomes

Mom Dad ; _
« Each chromosome in a pair has
S?é § the same genes
2 Y
; B § . » Genes can have different
AR A leti lled "alleles”
% BT b varieties, called "alleles
/SN
E E 3 gg e Can get the same alleles from
AC AD Bc 8D mom and dad, or different ones

* If we get the same ones we're
“homozygous’, if we get
different ones we're
“heterozygous”



Example of a DNA fingerprint -

one locus
mm?ﬂiﬁi&i_‘ y e Evidence is collected at a crime
samples assault scene
T evidence

wictim
fspect femj;‘ » Two suspects, Aand B, are

A fraction

suspect ‘ rmiale apprehended

B fraction
L
!' ~ | + Samples from the victim and the
- -
suspects suspects are compared

.-:-i'- with the crime scene evidence

-:- * Alleles at a locus appear on a gel as
- xe bands

’ e A suspect that has both of the bands
P ": —e present in the evidence is a match



What's the probability of a
genotype?

* |f lots of people have the same genotype as the
crime scene evidence, chances of a false
positive are high — innocent people could be

convicted

* WWe need to know two things:

- What is the frequency of each allele in the
population?

...which can be used to tell us...

- What is the frequency of each genotype in the
population?



Hardy-Weinberg with two alleles

Frequency of A in population = p
Frequency of B in population = q

Frequency of AA
: A(p) = B(a)
homozygotes: p?2 A(p) | AA (b)) | AB (pq)
Frequency of BB B(q) AB(pg) BB (q°)

homozygotes: g2

Frequency of
heterozygotes: 2pq



Probability of a match to our suspect

DA size
Mmiarkoers

g‘;[ﬂ g sexwal « Suspect B is a match
e | eidence . If the frequency in the population of the higher
Suspect If;rﬂﬂ band is 0.15, and of the lower band is 0.26...
R el » The genotype frequency of this heterozygous
L L L1l genotype would be:
| et - 2(0.15)(0.26) = 0.078
cccles (0.15)(0.26) = 0.
- } * Therefore, we could sample from our
- | population at random, and get a match to this
E | genotype 7.8% of the time
- -
I « With San Diego County's population of 3
’ | million, that would be 234,000 matches
i _! expected
1.2 3 5 6 * Not good enough! The solution”? More genes.



13 loci used by FBI

13 CODIS Core STR Loci
& with Chromosomal Positions

TPOX
=
| 351358 E E
E M
THO1 E
D55818 ;351”5 VWA
FGA ™ D75820
|csFiPO 3 |
{1 2 3 & § B 7 B 9 10 M 12
=]
AMEL

The loci are either
on different
chromosomes, or
are far apart on
the same
chromosome

Important?



STR Locus
D3S1358
VWA
FGA
D8S1179
D21S11
D18S51
D5S818
D13S317
D7S820
D16S539
THO1
TPOX
CSF1PO

An STR profile

Allele # (maternal) Allele # (paternal)

16
15
19
12
29
12
11
10
10

c© 0 O 00

16
16
20
12
31.2
17
13
11
12
11
I
10
12

|dentifiers
(this is allele
#16)



Convert the profile to genotype frequencies

STR Allele 1 Allele 2 P q Genotype freq.

Locus -
D3S1358 16 16 0.34 0.34 0.11621 Likelihood of
VWA 15 16 0.15 0.26 0.07932 genotype at
FGA 19 20 0.06 0.07 0.00839  each gene
D8S1179 12 12 0.13 0.13 0.01819

D21S11 29 31.2 0.18 0.05 0.01787

D18S51 12 17 0.05 0.18 0.01766

D5S818 11 13 0.24 0.23 0.10986

D13S317 10 11 0.02 0.31 0.01510

D7S820 10 12 0.34 0.12 0.08309

D16S539 8 11 0.04 0.3 0.02285

THO1 6 7 0.15 0.38 0.11535

TPOX 8 10 0.32 0.09 0.05720

CSF1PO 8 12 0.06 0.29 0.03283

Likelihood across all the genes is the product of the likelihoods
for each = 3.03x10°"°



What can we do with this
iInformation?

 Likelihoods are usually not interpretable by themselves
— need to compare them to other likelihoods

* The likelihood of a match if the sample didn't come from
the suspect is tiny — 3.3 x 10-19

e The likelihood of a match if the suspect is the source of
the blood is 1

* The ratio of the likelihood if the suspect is the source of
the blood to the likelihood if the suspect is not the
source of the blood is a “likelihood ratio”

« Can be used to assess how much more likely one
hypothesis is than the other



Likelihood ratio

p(Match|Perp) ]

'R = s
p(Match|Whoops) p(Match|Whoops)

1
330

=1x10"



Finding your roots

» Allele frequencies vary among populations

A DNA fingerprint can be used to assign a
person to their most likely population of origin

* Need:

- Gene frequency data from various populations
- A DNA fingerprint



Allele frequencies vary among
populations

We can make use of
this variability to ask,
which population is
most likely to have
produced the STR

profile we have in
hand?

European Ghanaians Uyghur Tamil
Xhosa Chinese Sinhalese

EU XH GH CH Uy SH TA
- QPPOODP
0000000



Example: which population is this person most
likely to have come from?

Bahama African American Navajo

STR Allele 1 Allele 2 o) q Genotype P q Genotype
Locus freq. freq.
D3S1358 16 16 0.34 0.34 0.11621 0.14 0.14 0.02006
VWA 15 16 0.15 0.26 0.07932 0.02 0.43 0.01646
FGA 19 20 0.06 0.07 0.00839 0.19 0.09 0.03389
D8S1179 12 12 0.13 0.13 0.01819 0.11 0.11 0.01265
D21S11 29 31.2 0.18 0.05 0.01787 0.18 0.06 0.02219
D18S51 12 17 0.05 0.18 0.01766 0.09 0.12 0.02199
D5S818 11 13 0.24 0.23 0.10986 0.58 0.05 0.05766
D13S317 10 11 0.02 0.31 0.01510 0.15 0.22 0.06724
D7S820 10 12 0.34 0.12 0.08309 0.14 0.28 0.08088
D16S539 8 11 0.04 0.3 0.02285 0.01 0.15 0.00409
THO1 6 7 0.15 0.38 0.11535 0.17 0.61 0.20534
TPOX 8 10 0.32 0.09 0.05720 0.35 0.02 0.01151
CSF1PO 8 12 0.06 0.29 0.03283 0.02 0.29 0.00970

Populations differ in their gene frequencies and genotype frequencies
Likelihood of being a Bahama African American = 3.03x10
Likelihood of being a Navajo = 2.03x10™



Likelihood of belonging to the Bahama African
American population rather than the Navajo
population

~19
Likelihood ratio= L (proﬁle|BAA) BERIE

== = 149.26
L(profile|Nav) 2.03x10 %

» 148.26 times more likely that this profile is
from BAA rather than Navajo population

* Conclusion depends on comparison group
used — think of these as competing
hypotheses, and we are only considering two
possible alternatives here
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