

Programming I – algorithms and
loops

How computers think
How to program them to think for you

Computers are dumb but fast

● Computers are literal
– They will do exactly what you tell them to do

– They will not do what you don't tell them to do

● Computers are fast
– They execute millions of instructions millions of

times per second

● The trick in programming is telling the computer
exactly what it needs to do to accomplish a task

Algorithms

● Computers execute instructions one at a time
● Algorithms are step by step procedures for

calculations
● They describe a series of steps for accomplishing a

task
● To get a computer to do a task, we need to:

– Identify the task to be completed

– Figure out how to do the task using operations the
computer knows how to do

– Write instructions to the computer to do the steps

Example: sorting numbers

● How to sort numbers from 1 to 10 in
descending order?

● There are many ways to do this
– All will accomplish the task

– Some will take longer than others

“Bubble” sort

● Start with unsorted numbers
● Compare the first and second

numbers – if they are out of order
swap them

● Continue to second and third number, third and
fourth, fourth and fifth, etc. until all comparisons
have been made

● Repeat until no more swaps are needed

F
irs

t
ru

n
S

ec
on

d
ru

n
T

hi
rd

 r
un

F
ou

rt
h

ru
n

F
ift

h
ru

n
S

ix
th

 r
un

S
ev

en
th

 r
un

E
ig

ht
h

ru
n

Finished!

Nothing changed in the last run, but needed to confirm that the list is in order

Better bubble sort

● A weakness of the algorithm: numbers can
move up rapidly, but down slowly

● An improved algorithm: alternate running up
and down between runs

S
ec

on
d

ru
n

T
hi

rd
 r

un
F

irs
t

ru
n

F
ou

rt
h

ru
n

F
ift

h
ru

n
S

ix
th

 r
un

Programming a computer

● A program is a series of instructions executed
by the computer

● They are written in a programming language
● They are executed in order, first to last

Programming languages

● Many out there, some more “English like” in their
syntax than others

● Written as “code” = a series of instructions, with a
syntax specific to the language

● Some then execute the code from within an
“interpreter” = another program that translates the
code into a binary form the computer understands

● Some “compile” the program = convert it into a
binary code the computer understands, which can
then be run without an interpreter

The language we will use

● The language used to program Excel is
“Microsoft Visual Basic for Applications” (VBA)
– Interpreted language

– Only runs from within an MS Office application, but
can take advantage of the capabilities of Excel

● Visual Basic is fairly simple to use, fairly
English-like in its syntax

● Programs that run in Excel are called VBA
“macros”

Macros in Excel

● Three major uses
– Automating a complex task

– Automating a repetitive task

– Implementing functions/algorithms not already available as
functions in Excel

● Simplifies programming
– Take advantage of Excel for storing data, file input/output,

summary, graphing

● Constrained by the way Excel works
– Need to learn to move around the worksheet, select cells,

from within the program

Automating a complex task

● Some operations take multiple steps to
complete

● May be faster to:
– Record yourself doing the task once with the macro

recorder

– Assign the macro to a key

– Hit the key to run the macro and perform the task

● Example: setting the format on some cells...

Automating a repetitive task

● If you need to do an operation on each cell in
your spreadsheet one at a time, it may be faster
to record the operation once, then write a “loop”
to repeat it

● Repetitive task example – another sort
algorithm

Random re-ordering

● Let's try another sort algorithm
● The algorithm matters...how would random re-

orderings work?
– Start with the numbers

– Generate random numbers

– Sort by the random numbers

– Check if the sort order is correct

● Let's try it once in Excel...

Repeating tasks in a computer –
using loops

● Loops are ways of telling the computer to repeat
an operation until a condition is met

● The condition can be several different things:
– A fixed number of repeats

– A run through a list of arguments

– A criteria that needs to be satisfied

● Begin and end with key words
● Details of the syntax of loops depends on the

programming language

Do loops

● Do loops can have two different forms:
– Do while

…
loop

– Do
…
loop until

● The criterion can be tested before or after the loop
instructions within the loop are executed

● Once the criterion is met the program leaves the loop
and continues on to the next instruction

The code that Excel recorded for
random sorter

Sub RandSort()
'
' RandSort Macro
' Show how slow a sorting algorithm that selects random sort orders would be.
'
' Keyboard Shortcut: Ctrl+Shift+R
'
 Range("A1:B11").Select
 ActiveWorkbook.Worksheets("RandomSorter").Sort.SortFields.Clear
 ActiveWorkbook.Worksheets("RandomSorter").Sort.SortFields.Add Key:=Range("B2:B11") _
 , SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal
 With ActiveWorkbook.Worksheets("RandomSorter").Sort
 .SetRange Range("A1:B11")
 .Header = xlYes
 .MatchCase = False
 .Orientation = xlTopToBottom
 .SortMethod = xlPinYin
 .Apply
 End With
End Sub

The header

'
' RandSort Macro
' Show how slow a sorting algorithm that selects random sort orders would
be.
'
' Keyboard Shortcut: Ctrl+Shift+R
'

The apostrophes are “comment” characters. Anything after
them is ignored by the interpreter.

Used to make notes about what the program does.

Comments are a Good Thing.

Subroutines are marked by Sub,
End Sub

Sub RandSort()

Instructions to execute...

End Sub

At least one must be present for the macro to run.

Sorting by the random numbers

Range("A1:B11").Select

 ActiveWorkbook.Worksheets("RandomSorter").Sort.SortFields.Clear

 ActiveWorkbook.Worksheets("RandomSorter").Sort.SortFields.Add Key:=Range("B2:B11") _
 , SortOn:=xlSortOnValues, Order:=xlAscending,

DataOption:=xlSortNormal
 With ActiveWorkbook.Worksheets("RandomSorter").Sort
 .SetRange Range("A1:B11")
 .Header = xlYes
 .MatchCase = False
 .Orientation = xlTopToBottom
 .SortMethod = xlPinYin
 .Apply
 End With

Select the range of data
to sort (not needed)

Clear out any
old sort keys

Identify the sort
key to use, and
the order
(ascending)

Execute the
sort

Now, make it run repeatedly

● The rand() function selects a new set of random
numbers each time the sheet recalculates

● Sorting recalculates the sheet
● As soon as the numbers are sorted, there are

new random numbers for sorting again
● All that's needed is to tell the macro to repeat

the operation until the numbers are in order

Do this repeatedly with a Do
while...loop

Sub RandSort()
'
' RandSort Macro
' Show how slow a sorting algorithm that selects random sort orders would be.
'
' Keyboard Shortcut: Ctrl+Shift+R
'
Do While Range(“B13”) = False
 Range("A1:B11").Select
 ActiveWorkbook.Worksheets("RandomSorter").Sort.SortFields.Clear
 ActiveWorkbook.Worksheets("RandomSorter").Sort.SortFields.Add Key:=Range("B2:B11") _
 , SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal
 With ActiveWorkbook.Worksheets("RandomSorter").Sort

....
 End With
 Range(“B15”).Select
 ActiveCell.Value = ActiveCell.Value + 1
Loop

End Sub

The loop

Count iterations

For...next loops

● Useful for executing an operation on a defined
list of inputs, or a fixed number of times

● Syntax is:

For i in 1 to 10
 Things for the loop to do
Next i

● We'll use these a lot for randomization testing
and bootstrapping

Infinite loops

● Avoid these
● If you use a loop in which the ending condition

cannot ever be met, it will run forever
● If this happens, VB allows you to interrupt a

running macro
● Childishly easy to create!

An infinite Do...loop

● The following is an infinite Do loop

Range(“A2”).Value = False
Do while Range(“A2”) = False

Loop

● A2 is never changed, so it can never become True
● This will execute forever, until you stop it or the

computer dies
● Stop a program with the Escape key (Esc)

Randomization testing

● A “nonparametric” approach to analyzing data
● Generally used when the usual parametric

approaches (t-tests, ANOVA, regression, etc.)
aren't appropriate because of violated
assumptions

● The sampling distribution is derived by
randomly shuffling the data

Example: Mantel tests

● Mantel tests are tests of association between two square
matrices

● Often these are “distance matrices”
– Geographic distance between sampled populations, genetic

distance between sampled populations

● A measure of association between the matrices is
calculated, then the elements of the matrix are randomly
shuffled

● The association is re-calculated with each random shuffle
● The observed association is compared with the randomly

generated differences to obtain a p-value

Association between geographic
distance and genetic distance

● Organisms tend to find mates in their vicinities
● This leads to “isolation by distance”
● Gene pools tend to become more different with

increasing distance
● Is this true for humans?
● Let's look at the association between gene

frequencies and location from the DNA
fingerprint data

The analysis

● Data from 7 states
● Calculate a genetic distance among all possible

pairs of states
● Treat the location of the capitol city as the

location, calculate distances among them
● Test for association using a Mantel test

Euclidean distance

● As you no doubt recall, the distance between
two points with coordinates (x1,y1) and (x2, y2)
is:

● If we have more than two coordinates we just
continue to add squared differences:

d=√(x1− x2)
2+ (y1− y2)

2

d=√(x1− x2)
2+ (y1− y2)

2+ (z1−z2)
2. ..

Distance between capitols

Done in another program – earth is curved, longitude
lines are not parallel, need software that knows this

Distances between sets of gene
frequencies

California Alabama

The relationship we'll test

Does the genetic distance depend on geographic distance?

Correlation
between
these is 0.39

Why not just test the correlation?

● The measures aren't independent
● We have only 7 states, but we've generated 21

distances of each type
● Since parametric tests require independence,

we can't use them
● But, a randomization test doesn't make this

assumption, because any dependence will be
accounted for when we randomly shuffle the
data

Unfold the data

The logic of the test

● Assume no relationship
– The correlation between them is just random sampling

– If so, the amount of correlation should be typical of
randomly generated data

● If true, randomly shuffled genetic and geographic
distances will give correlations as big as observed

● Conversely, if the amount of association we see is
big compared to what we see when we randomly
shuffle the data, we can conclude the association
is real

Set up the
worksheet

=rand()

{=sum(product(b2:b22,c2:c22))}

A copy of the observed test statistic

Column for test
statistic for random
shuffles

Use the macro recorder to:

Sort only the genetic
distances by the Randomizer
column

Copy the new test statistic and
paste-special to column F

Macro as recorded

Modify the macro to loop

● Two changes:
– Add a “For...next” loop

– Each time through the macro, need to store the
measure of association

● Currently, copying/pasting measure of
association to F2 – looping will make us replace
this number each time through

● But, the counter (“i”) increases by 1 each
iteration – if we paste to cell F(i+1), we will write
to a new row each time

Add a loop, record each result

Select and copy the
Mantel statistic

Select a location to record it

Paste-special the
value

Run the macro,
sort the results

How many exceeded the
observed?

We're only interested in whether
there was a greater association
than observed, so can just look
at values bigger than observed
(one-tailed test)

Calculate p

p=
Number exceeding observed+ 1
Number of iterations+ 1

p=
41+ 1
1000+ 1

=0.042

Reject the null – there is a (weak
but) significant association
between genetic distance and
geographic distance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

