Applications of loops - bootstrapping

Computationally intensive methods of statistical analysis Using the computer to make hairy statistics easy

Confidence intervals

- If you want to know how tall people are:
 - Collect a data set and calculate a mean (\overline{x})
 - We know that a different set of data will give us a different mean – the current mean is probably not exactly equal to the mean for all people
- Confidence intervals give us a way of expressing what we would expect the mean to be if we collected another sample

The usual method of calculating confidence intervals

- From a sample of data, calculate the mean, standard deviation, and standard error
- Calculate a (usually 95%) confidence interval with:

 $\overline{x} \pm t(s_x)$

- Works great for a wide range of conditions
- Sometimes it doesn't work well, sometimes it's not possible to use it at all

When the simple method won't work, resample

- Resampling statistical methods are based on using only the data in hand to derive p-values
- For comparisons of means use randomization tests
- For confidence intervals use the "bootstrap"

Example: parasitoid wasps

- Trichogramma brassicae
- Lay eggs on butterfly eggs
- Ride on legs of butterflies
- Can they tell mated butterflies from virgins?
- Present them with mated and virgins simultaneously, see which they climb on to
- Result: 23 out of 32 chose mated butterflies proportion is 0.71875
- If they are guessing, expect 50% to be mated – does the 95% confidence interval include 50%?

Confidence intervals for proportions are problematic

- Problem sampling distribution of proportions only symmetrical at 0.5
- Confidence intervals need
 to be asymmetrical
- Symmetrical intervals won't represent the possible values of p accurately, and may even go out of bounds (under 0, over 1)
- Various methods to address this analytically, but no theoretically best method

0.25 p = 0.9 n = 0.10.2 - 0.5 0.15 Probability 0.1 0.05 0.1 0.3 0.2 04 05 0.6 07 0.8 0.9 Proportion

Sampling distribution of proportions

Bootstrapping the confidence interval for a proportion

- Instead of an imperfect analytical solution, we can estimate the interval by resampling
- We'll find this by:
 - Randomly selecting with replacement from the observed data – some observations will be included more than once, others not included at all
 - Calculate the proportion of mated butterflies each time
 - Repeat many times (at least 1000)
 - The 2.5%-ile and 97.5%-ile for proportions from the 1000 sets of resampled data are the 95% confidence limits

1		А	В
1	1	Number	Wasp selections
	2	1	Mated
	3	2	Mated
	4	3	Mated
	5	4	Mated
	6	5	Mated
	7	6	Mated
	8	7	Mated
	9	8	Mated
1	10	9	Mated
ĺ	11	10	Mated
	12	11	Mated
	13	12	Mated
	14	13	Mated
	15	14	Mated
	16	15	Mated
	17	16	Mated
	18	17	Mated
	19	18	Mated
	20	19	Mated
	21	20	Mated
Ì	22	21	Mated
l	23	22	Mated
	24	23	Mated
	25	24	Unmated
	26	25	Unmated
	27	26	Unmated
	28	27	Unmated
	29	28	Unmated
	30	29	Unmated
	31	30	Unmated
	32	31	Unmated
	33	32	Unmated

The data – 23 out of 32 wasps on mated butterflies

We need to sample with replacement 32 times

Randomly pick numbers from 1 to 32

=randbetween(1,32)

Select the wasp selection that corresponds with this random number

=lookup(randbetween(1,32), A2:A33, B2:B33)

Generated random number Look up the number in the "Number" column Return the contents of the "Wasp selections" column

	E2	• (@	f _* =	LOOKUP(D2,A\$2:A	\$33,B\$2:B\$	33)	
	А	В	С	D	E	F	G
1	Number	Wasp selections		Random number	Bootstrap	sample	
2	1	Mated		9	Mated		
3	2	Mated		31	Unmated		
4	3	Mated		6	Mated		
5	4	Mated		23	Mated		
6	5	Mated		14	Mated		
7	6	Mated		31	Unmated		
8	7	Mated		9	Mated		
9	8	Mated		24	Unmated		
10	9	Mated		15	Mated		
11	10	Mated		25	Unmated		
12	11	Mated		27	Unmated		
13	12	Mated		4	Mated		
14	13	Mated		21	Mated		
15	14	Mated		6	Mated		
16	15	Mated		9	Mated		
17	16	Mated		22	Mated		
18	17	Mated		27	Unmated		
19	18	Mated		21	Mated		
20	19	Mated		14	Mated		
21	20	Mated		27	Unmated		
22	21	Mated		10	Mated		
23	22	Mated		6	Mated		
24	23	Mated		6	Mated		
25	24	Unmated		12	Mated		
26	25	Unmated		26	Unmated		
27	26	Unmated		18	Mated		
28	27	Unmated		30	Unmated		
29	28	Unmated		15	Mated		
30	29	Unmated		3	Mated		
31	30	Unmated		20	Mated		
32	31	Unmated		29	Unmated		
33	32	Unmated		23	Mated		
34						-	
35				Number mated	22		
36						-	
27							

Randomly sample with replacement, n = 32

=randbetween(1,32)

=COUNTIF(D2:D33, "Mated")

Repeat many times using a macro

- To repeat this, we will use a "For...next" loop
 - We want to repeat a fixed number of times (1000)
 - Each time through we'll re-calculate the sheet to select a new set of random numbers
 - Each time we select a new sample, we want to record the number mated
- At the end, we will have 1000 numbers of times mated butterflies were selected
- We can calculate the proportions (divide by 32), sort them, and find the endpoints of the interval

Record macro to start

- Start the macro recorder, give it a name and a shortcut key (CTRL+SHIFT+B)
- Hit the "recalculate" key (F9) to select a new sample
- Copy the number mated, paste-special to the first row of a results column
- Stop the recorder
- Open the macro for editing

Record Macro 🙎 🕺
Macro name:
Bootstrap
Shortcut key:
Ctrl+Shift+ B
Store macro in:
This Workbook
Description:
Bootstrap a confidence interval for the proportion of wasps selecting mated butterflies
OK Cancel

As recorded...

<pre>(General)</pre>
Sub Bootstrap() ' Bootstrap Macro ' Bootstrap a confidence interval for the proportion of wasps selecting mated butterflies. ' Keyboard Shortcut: Ctrl+Shift+B ' Calculate Range("E35").Select Selection.Copy Range("I2").Select Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ :=False, Transpose:=False End Sub

Add a loop

General)	▼	Bootstrap		
Sub Bootstrap()				
1				
' Bootstrap Macro				
' Bootstrap a confidence '	interval for the pro	oportion of wasps	selecting mated k	outterflies
' Keyboard Shortcut: Ctrl	+Shift+B			
For i = 1 To 1000				
Calculate				
Range("E35").Select				
Selection.Copy				
Range("I2").Select				
Selection.PasteSpecia :=False, Transpos	l Paste:=xlPasteVal e:=False	ues, Operation:=x.	lNone, SkipBlanks	_
Next i				
End Sub				

Confirm it worked by hitting CTRL+SHIFT+B

1,000 samples are drawn, and the number mated is pasted each time in I2 Need to move down a row each time

Selecting a new row each round

<pre>(General)</pre>	4	bootstrap_rand_test.xlsm - Module1 (Code)	-OX
<pre>Sub Bootstrap() ' Bootstrap Macro 'Bootstrap a confidence interval for the proportion of wasps selecting mated butterflies. ' Keyboard Shortcut: Ctrl+Shift+B ' For i = 1 To 1000 Calculate Range("E35").Select Selection.Copy Range("I" & i + 1).Select Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ :=False. Transnose:=False</pre>	((General) 🔽 Bootstrap	•
Next i End Sub		Sub Bootstrap() ' Bootstrap Macro ' Bootstrap a confidence interval for the proportion of wasps selecting mated butterf. ' Keyboard Shortcut: Ctrl+Shift+B For i = 1 To 1000 Calculate Range("II" & i + 1).Select Selection.Copy <u>Range("I" & i + 1).Select</u> Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ :=False, Transpose:=False Next i End Sub	lies.

	A	В	С	D	E	F	G	Н		J	К	
1	Number	Wasp selections		Random number	Bootstrap	sample			Bootstrap	number m	ated	
2	1	Mated		7	Mated				20			
3	2	Mated		19	Mated				23			
4	3	Mated		31	Unmated				23			
5	4	Mated		30	Unmated				20			o orașe per sta
6	5	Mated		18	Mated				20			
7	6	Mated		19	Mated				19			
8	7	Mated		12	Mated				22			
9	8	Mated		32	Unmated				19			
10	9	Mated		2	Mated				24			
11	10	Mated		20	Mated				29			
12	11	Mated		25	Unmated				26			
13	12	Mated		15	Mated				24			
14	13	Mated		21	Mated				25			
15	14	Mated		10	Mated				28			
16	15	Mated		14	Mated				16			
17	16	Mated		5	Mated				21			
18	17	Mated		5	Mated				24			
19	18	Mated		16	Mated				25			
20	19	Mated		7	Mated				21			
21	20	Mated		24	Unmated				23			Number
22	21	Mated		24	Unmated				21			mated from
23	22	Mated		11	Mated				26			mateu non
24	23	Mated		12	Mated				20			1,000
25	24	Unmated		27	Unmated				20			bootstran
26	25	Unmated		26	Unmated				25			someles
27	26	Unmated		23	Mated				20			samples
28	27	Unmated		24	Unmated				18			
29	28	Unmated		13	Mated				23			14 M M M M M
30	29	Unmated		24	Unmated				23			
31	30	Unmated		27	Unmated				27			
32	31	Unmated		3	Mated				23			a da an
33	32	Unmated		3	Mated				22			
34									21			
998									23			
999									22			
000									21			
.001									24			
1002												

The upper and lower limits

Another example: species diversity

- Diversity of species at a site can be thought of as a combination of:
 - Species richness = the number of species there (the more species the more diverse)
 - Evenness = the relative number of each species (the more even the more diverse)
- Shannon-Wiener index combines these two characteristics into one value

$$H' = -\sum p_i \log p_i$$

	К1	- (0
	Α	В
1	Number	Species
2	1	Chamise
3	2	Chamise
4	3	Chamise
5	4	Chamise
6	5	Chamise
7	6	Chamise
8	7	Chamise
9	8	Chamise
10	9	Chamise
11	10	Chamise
12	11	Chamise
13	12	Chamise
14	13	Chamise
15	14	Chamise
16	15	Chamise
17	16	Chamise
18	17	Chamise
19	18	Chamise
20	19	Chamise
21	20	Chamise
22	21	Chamise
23	22	Chamise
24	23	Chamise
25	24	Chamise
26	25	Chamise
27	26	Chamise
28	27	Chamise
29	28	Chamise
30	29	Chamise
31	30	Chamise
32	31	Chamise
33	32	Chamise
34	33	White sage
35	34	White sage
36	35	White sage

Calculating the index

	B8						
	А	В	С	D	E		
1	Species	Relative frequency					
2	Chamise	0.32					
3	White sage	0.10					
4	Buckwheat	0.15					
5	Black sage	0.30					
6	Laurel sumac	0.13					
7							
8	Shannon-Wiener	1.506					
9							

- List of species, and the relative frequency of occurrence
- There were 100 total shrubs at the site

Calculating a confidence interval

- There is no formula for calculating the standard error for a Shannon index
- But, we can resample the data, and calculate the index each time
- Variation in the index can then be used to give us confidence intervals

Set up the sheet

	К1	-	. (•	률 🖉 Bootsrap Shar	nnon-Wiener									
	А	В	С	D	E	F	G	Н		J	К	L	M	N
1	Number	Species		Random numbers	Bootstrap sample		Row Labels 💌	Count of Bootstrap sam	ple		Bootsrap	hannon-V	Viener	
2	1	Chamise		76	Black sage		Black sage		29					
3	2	Chamise		45	Buckwheat		Buckwheat		16					
4	3	Chamise		47	Buckwheat		Chamise		29					
5	4	Chamise		71	Black sage		Laurel sumac		11		C	olumr	for	
6	5	Chamise		99	Laurel sumac		White sage		15		U		101	
7	6	Chamise		89	Laurel sumac		Grand Total		100		re	sults		
8	7	' Chamise		45	Buckwheat					X				
9	8	Chamise		40	White sage					\mathbf{i}				
10	9	Chamise		48	Buckwheat	Sh	annon-Wiener	1	.539					
11	10	Chamise		4	Chamise									
12	11	Chamise		44	Buckwheat									
13	12	Chamise		56	Buckwheat									
14	13	Chamise		84	Black sage								-	
15	14	Chamise		11	Chamise						Pivot	table	of	
16	15	Chamise		23	Chamise						froqui	ancia	2	
17	16	Chamise		84	Black sage		S-W fror	n bootstrap s	ampl	е	requ		5	
18	17	' Chamise		28	Chamise						trom			
19	18	Chamise		86	Black sage						hoots	tran		
20	19	Chamise		40	White sage						50013	u up		
21	20	Chamise		48	Buckwheat 🔍						samp	le		
22	21	Chamise		46	Buckwheat									
23	22	Chamise	. /	99	Laurel sumac									
24	23	Chamise		87	Black sage	\cap	ne hoot	etran cample						
25	24	Chamise	Th	e data 🛛 🕫	Black sage	U		Strap Sampic						
26	25	Chamise		70	Black sage									
27	26	Chamise		74	Black sage									
28	27	' Chamise		26	Chamise									
29	28	Chamise		93	Laurel sumac									
30	29	Chamise		38	White sage									
31	30	Chamise		85	Black sage									
32	21	Chamisa		12	Chamise									

Record the macro

- Each time, will need to:
 - Refresh the pivot table to reflect the new bootstrap sample – a new sample will automatically be generated when this is done for the next run
 - Copy the S-W value
 - Copy-Paste-special the value to column K

As recorded

```
Sub BootstrapSW()
'
BootstrapSW Macro
Bootstrap a confidence interval for the Shannon Wiener index.
'
Keyboard Shortcut: Ctrl+Shift+S
'
Range("H5").Select
ActiveSheet.PivotTables("PivotTable1").PivotCache.Refresh
Range("H10").Select
Selection.Copy
Range("K2").Select
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks
:=False, Transpose:=False
End Sub
```

Add a loop, record the results

```
Sub BootstrapSW()
   ' BootstrapSW Macro
     Bootstrap a confidence interval for the Shannon Wiener index.
   ' Keyboard Shortcut: Ctrl+Shift+S
   For i = 1 To 1000
       ActiveSheet.PivotTables("PivotTable1").PivotCache.Refresh
       Range("H10").Select
       Selection.Copy
       Range("K" & i + 1).Select
       Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks
           :=False, Transpose:=False
   Next i
   End Sub
= = •
```

I	J	К	L	
	Order	Bootsrap 9	Shannon-V	
	1	1.265197		Dur
	2	1.278225		RUI
	3	1.318246		
	4	1.319591		
	5	1.333683		
	6	1.336067		Out
	7	1.336185		
	8	1.344502		
	9	1.346924		
	10	1.355853		
	11	1.35641		
	12	1.35668		
	13	1.356981		
	14	1.358606		
	15	1.360736		
	16	1.361989		
	17	1.362091		
	18	1.362475		
	19	1.362633		
	20	1.364016		
	21	1.365962		
	22	1.366737		
	23	1.3715		
	24	1.371836		
1	25	1.372095		
	26	1.372224		
	27	1.373081		
	28	1.373165		
	29	1.374082		
	972	1.562927		
	973	1.563441		
	974	1.563572		
	975	1.564675		
	976	1.564732		
2	977	1.56513		
	978	1 56513		

Run the macro, sort the output values, pick the endpoints

Lower

Upper

Estimate: 1.539

Lower limit: 1.372 Upper limit: 1.565

Testing hypotheses with bootstrapping

- We used randomization testing last week to test hypotheses
- Can also bootstrap the difference between groups
- If the 95% CI of the differences doesn't include 0, the groups are different

Do these two locations have significantly different diversity?

	А	В	С	D	E	l l
1		Site 1		Site 2		
2						
3	Species	Relative frequency		Relative f	requency	
4	Chamise	0.32		0.40		
5	White sage	0.10		0.20		
6	Buckwheat	0.15		0.20		
7	Black sage	0.30		0.20		
8	Laurel sumac	0.13				
9						
10	Shannon-Wie	1.506		1.332		1
11						
12	ちちょうちょう ちょうしょう ひんしょう ひんしょ ひんしょう ひんしょ ひんしょう ひんしょ ひんしょ ひんしょ ひんしょ ひんしょ ひんしょ ひんしょ ひんしょ	NATA INTERATION INTO A STRATEGICA IN THE STRATEGICAL STRAT				and the second

Bootstrap the difference between them, see if the interval contains 0

	А	В	С	D	E	F	G	Н	I	J	К	L	M	N	0	F
1	Site 1		Site 2		Site 1			Site 2			Site 1			Order	Difference	
2	Number	Species	Species		Random numbers	Bootstrap sample		Random numbers	Bootstrap sample		Row Labels 💌	Count of Boots	strap samp	le		
3	1	Chamise	Chamise		96	Laurel sumac		54	White sage		Black sage	39				
4	2	Chamise	Chamise		30	Chamise		70	Buckwheat		Buckwheat	12				
5	3	Chamise	Chamise		12	Chamise		49	White sage		Chamise	23				
6	4	Chamise	Chamise		74	Black sage		41	White sage		Laurel sumac	14				
7	5	Chamise	Chamise		76	Black sage		15	Chamise		White sage	12				
8	6	Chamise	Chamise		41	White sage		30	Chamise		Grand Total	100				
9	7	Chamise	Chamise		73	Black sage		12	Chamise							
10	8	Chamise	Chamise		26	Chamise		56	White sage							
11	9	Chamise	Chamise		71	Black sage		83	Black sage	Sh	annon-Wiener	1.489				
12	10	Chamise	Chamise		27	Chamise		45	White sage							
13	11	Chamise	Chamise		69	Black sage		16	Chamise							
14	12	Chamise	Chamise		77	Black sage		36	Chamise		Site 2					
15	13	Chamise	Chamise		22	Chamise		51	White sage		Row Labels 💌	Count of Boots	strap samp	le		
16	14	Chamise	Chamise		61	Black sage		58	White sage		Black sage	16				
17	15	Chamise	Chamise		40	White sage		74	Buckwheat		Buckwheat	29				
18	16	Chamise	Chamise		26	Chamise		21	Chamise		Chamise	45				
19	17	Chamise	Chamise		42	White sage		22	Chamise		White sage	10				
20	18	Chamise	Chamise		76	Black sage		57	White sage		Grand Total	100				
21	19	Chamise	Chamise		50	Buckwheat		83	Black sage							
22	20	Chamise	Chamise		26	Chamise		25	Chamise							
23	21	Chamise	Chamise		48	Buckwheat		21	Chamise	Sh	annon-Wiener	1.242				
24	22	Chamise	Chamise		87	Black sage		79	Buckwheat							
25	23	Chamise	Chamise		5	Chamise		73	Buckwheat							
26	24	Chamise	Chamise		58	Black sage		33	Chamise	Differe	nce in diversity	0.248				
27	25	Chamise	Chamise		39	White sage		44	White sage							
28	26	Chamise	Chamise		61	Black sage		70	Buckwheat							
29	27	Chamise	Chamise		79	Black sage		33	Chamise							
30	28	Chamise	Chamise		21	Chamise		99	Black sage							
31	29	Chamise	Chamise		4	Chamise		33	Chamise							
32	30	Chamise	Chamise		78	Black sage		95	Black sage							
33	31	Chamise	Chamise		92	Laurel sumac		28	Chamise							
34	32	Chamise	Chamise		72	Black sage		76	Buckwheat							
35	33	White sag	Chamise		50	Buckwheat		19	Chamise							
36	34	White sag	Chamise		70	Black sage		20	Chamise							
37	35	White sag	Chamise		82	Black sage		66	Buckwheat							
28	36	White con	Chamica		90	Laural sumar		37	Chamica		ermerine et toooren			a sayaa sa s		1000000

Macro recorder

- Like before, except...
 - Refresh both pivot tables
 - Save a copy of the difference each time

As recorded

```
Sub DiversityDifference()
' DiversityDifference Macro
' Difference in diversity between two sites
'
' Keyboard Shortcut: Ctrl+Shift+D
'
Range("L4").Select
ActiveSheet.PivotTables("PivotTable1").PivotCache.Refresh
Range("L17").Select
ActiveSheet.PivotTables("PivotTable2").PivotCache.Refresh
Range("L26").Select
Selection.Copy
Range("02").Select
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks
:=False, Transpose:=False
End Sub
```

Add a loop, record results each time

```
Sub DiversityDifference()
 DiversityDifference Macro
 Difference in diversity between two sites
1
  Keyboard Shortcut: Ctrl+Shift+D
For i = 1 To 1000
    ActiveSheet.PivotTables("PivotTable1").PivotCache.Refresh
    ActiveSheet.PivotTables("PivotTable2").PivotCache.Refresh
    Range("L26").Select
    Selection.Copy
    Range("O" & i + 1).Select
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks
        :=False, Transpose:=False
Next i
End Sub
```

M	N		0	Р
	Order		Difference	2
		1	-0.01889	
		2	-0.00709	
		3	0.010641	
		4	0.012019	
		5	0.018965	
		6	0.02457	
		- 7	0.025945	
		8	0.028224	
		9	0.028975	
		10	0.034436	
		11	0.035053	
		12	0.03512	
		13	0.035837	
		14	0.038098	
		15	0.038373	
		16	0.040118	
		17	0.041657	
		18	0.041712	
		19	0.04396	
		20	0.044421	
		21	0.044893	
		22	0.047778	
		23	0.047795	
		24	0.047975	
		25	0.051934	
		26	0.052551	
		27	0.053051	
		973	0.275159	
		974	0.27543	
		975	0.275549	
		976	0.275576	
			0 275072	

Sort results, find the endpoints

Zero difference is not within the confidence interval, so site 1 is significantly more diverse than site 2