More programming

Decision structures, controlling flow

More complex algorithms: actions that depend on decisions

- The simple algorithms we've learned so far just do the same thing repeatedly, regardless of the result
- We can implement more complicated programs if we are able to have the program do different things depending on what is happening
- Also useful for checking for error conditions

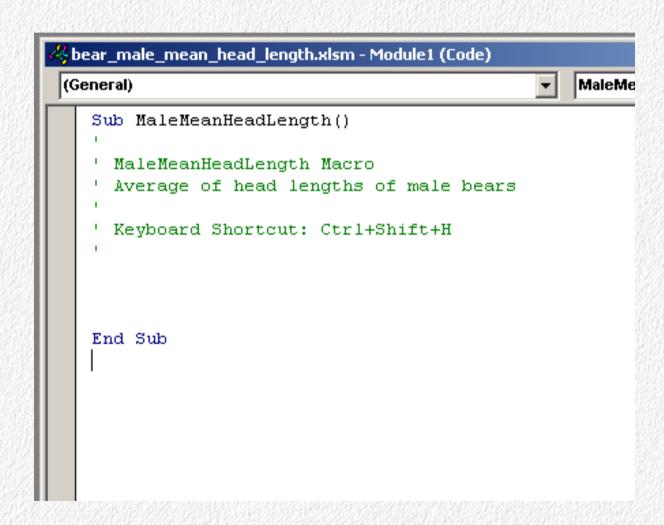
If...then

- If...then statements allow you to execute different commands depending on a logical test
- We've seen these as functions in Excel

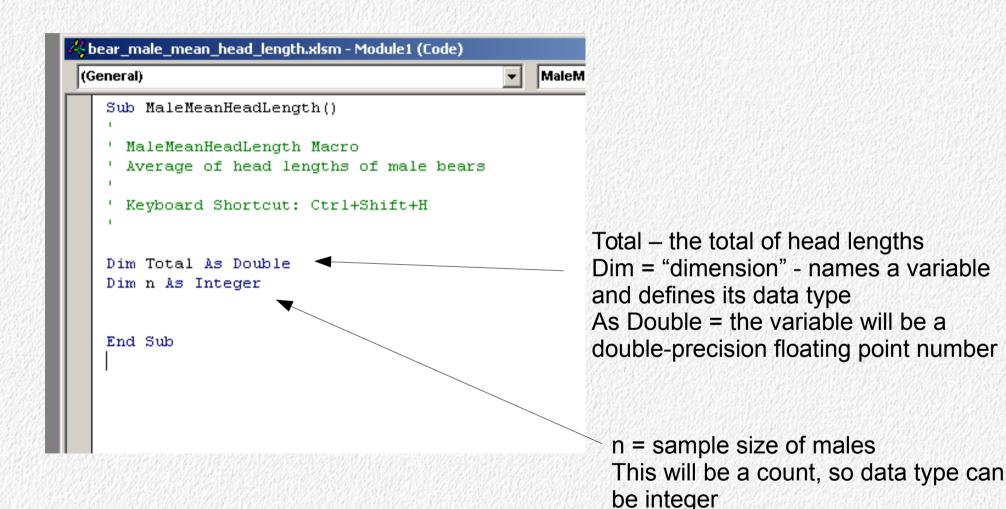
```
=if(a2=b2, c2*d2, 2*c2*d2)
```

- In a macro, we embed the actions if true and actions if false between an "If...End if" statement
- Anything between the If and the End If will only be calculated if the If is true

Example: calculate the mean head length for male bears

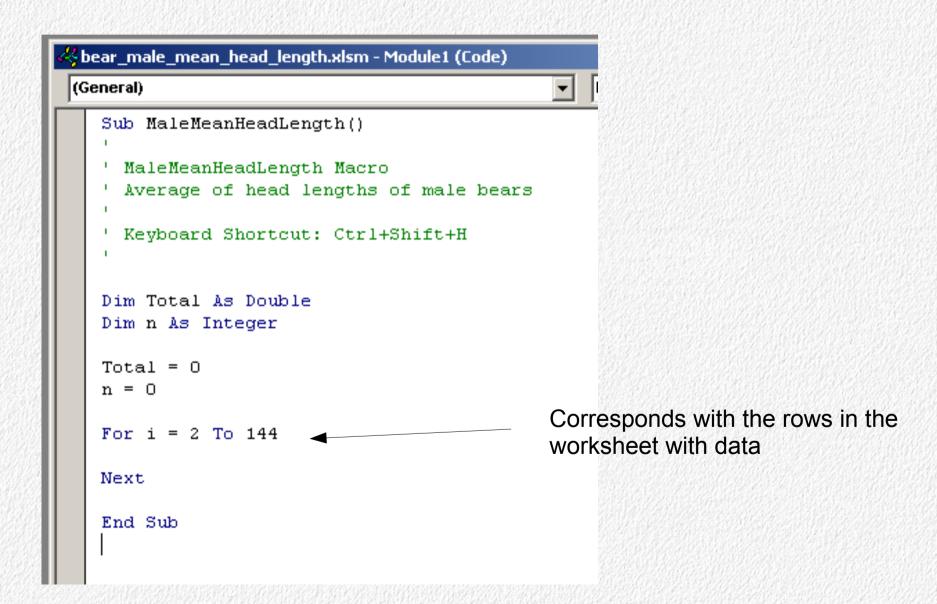

- First as pseudo-code: a set of instructions that describe the procedure that you program will use
 - English, human-readable
 - Focus on the design, not the implementation
- Check if the bear is a male
- If yes, add the head length
- Add one to the counter
- Divide the head length total by the counter

4	Α	В	С	D	E	F	G	Н		J	K	L
1	ID	Age	Month	Sex	Head.L	Head.W	Neck.G	Length	Chest.G	Weight	Obs.No	Name
2	39	19	7	Male	10	5	15	45	23	65	1	Allen
3	41	19	7	Female	11	6.5	20	47.5	24	70	1	Berta
4	41	20	8	Female	12	6	17	57	27	74	2	Berta
5	41	23	11	Female	12.5	5	20.5	59.5	38	142	3	Berta
6	41	29	5	Female	12	6	18	62	31	121	4	Berta
7	43	19	7	Male	11	5.5	16	53	26	80	1	Clyde
8	43	20	8	Male	12	5.5	17	56	30.5	108	2	Clyde
9	45	55	7	Male	16.5	9	28	67.5	45	344	1	Doc
10	45	67	7	Male	16.5	9	27	78	49	371	2	Doc
11	48	81	9	Male	15.5	8	31	72	54	416	1	Quincy
12	69		10	Male	16	8	32	77	52	432	1	Kooch
13	83	115	7	Male	17	10	31.5	72	49	348	1	Charlie
14	83	117	9	Male	15.5	7.5	32	75	54.5	476	2	Charlie
15	83	124	4	Male	17.5	8	32	75	55	478	3	Charlie
16	83	140	8	Male	15	9	33	75	49	386	4	Charlie
	Markagaj			r emare	ANAS YAS		4114144 <u>5</u>	abatang	ukeang	2508/A- <u>123</u> 3	MATERIAL SA	Tuuri
133				Male	15.5							lan
134				Male	15.5							Larry
135				Male	14.5							Scott
136				Male	12.5							Grizz
137				Female	12.3							Sara
138				Male	12							Lou
139				Female	13				40			Molly
L40				Male	15.5							Gary
L 41				Male	15.5							Gary
L42				Male	12							Graham
. 42 L 43				Male	13.5							Jeffrey
L43 L44				Male	16.5							Curt
	037		0	IVIGIC	10,3	0,3	30	7.2	42	370		Suit


Implementing the macro

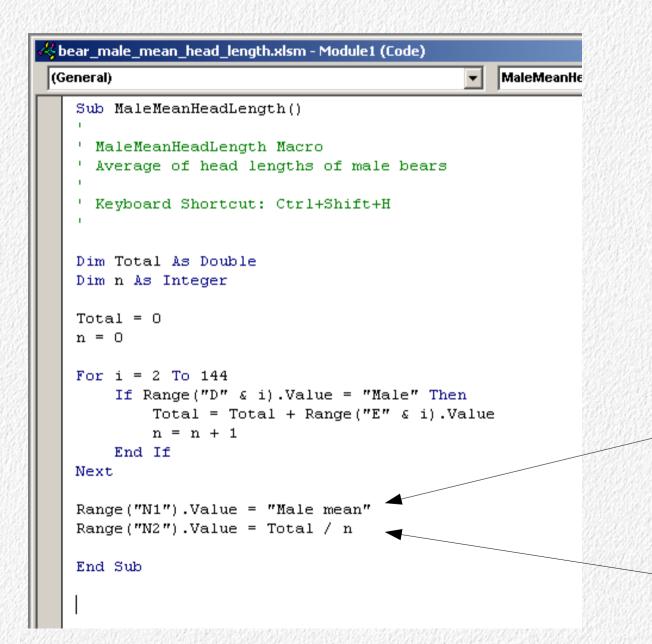
- In Excel, open the file
- Note the column with sex and head length
- Note the rows that start and end the data
- Start the macro recorder, give the macro a name and shortcut key, then stop the recorder
- Open the macro, and write...

Macro with no code


Need a place for the sum and count

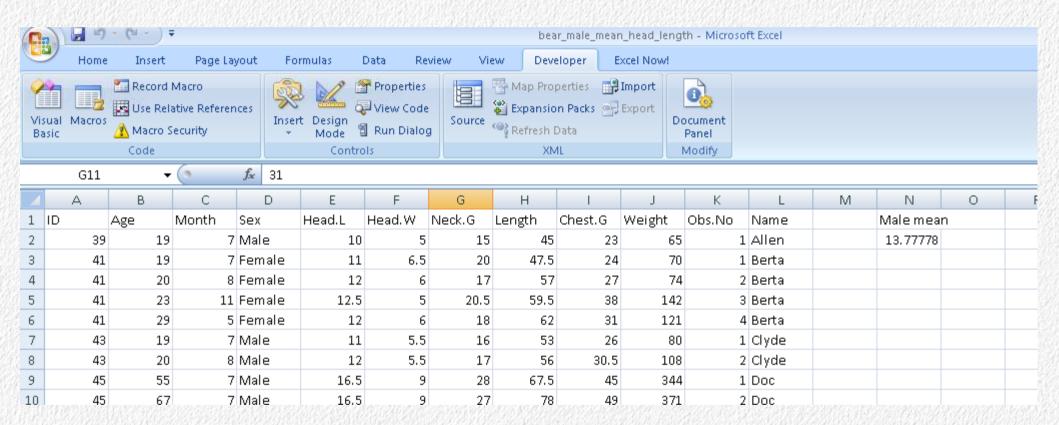
Set the sum and count to 0 to start

```
🞖 bear_male_mean_head_length.xlsm - Module1 (Code)
                                                   M
(General)
   Sub MaleMeanHeadLength()
   ' MaleMeanHeadLength Macro
     Average of head lengths of male bears
   ' Keyboard Shortcut: Ctrl+Shift+H
   Dim Total As Double
   Dim n As Integer
   Total = 0
   n = 0
   End Sub
```


Add a loop

Add to total and n only if it's a male

```
🞖 bear_male_mean_head_length.xlsm - Module1 (Code)
                                                   MaleMeanHea
(General)
   Sub MaleMeanHeadLength()
   ' MaleMeanHeadLength Macro
   ' Average of head lengths of male bears
   ' Keyboard Shortcut: Ctrl+Shift+H
   Dim Total As Double
   Dim n As Integer
   Total = 0
   n = 0
   For i = 2 To 144
       If Range ("D" & i). Value = "Male" Then
           Total = Total + Range("E" & i). Value
           n = n + 1
       End If
   Next
   End Sub
```


Calculate the mean, report the result

Label the output in cell N1

Calculate and assign the mean to cell N2

Run it ...

Step through the code – debugging

- To see what it's doing, we'll add a couple of pieces of "debugging code" - things that help you figure out what the program is doing, but that aren't needed if everything is working okay
 - We'll report Total, n, and i for each run through the loop
- Then, we'll use F8 to step through the lines of code one at a time and see how these values change as we move through

```
Dim Total As Double
Dim n As Integer
Tot.al = 0
n = 0
Range("N5").Value = "Total"
Range("N6").Value = "n"
Range("N7").Value = "i"
For i = 2 To 144
    Range ("D" & i) . Select
    If Range ("D" & i). Value = "Male" Then
        Total = Total + Range("E" & i). Value
        n = n + 1
    End If
    Range ("05"). Value = Total
    Range("06"). Value = n
    Range ("07"). Value = i
Next
Range("N1").Value = "Male mean"
Range("N2").Value = Total / n
```

End Sub

Debugging code

Label the outputs
Once, before the loop

Select the cell being tested Each time through the loop

Put the values in the spreadsheet Each time through the loop

```
Range ("N5") . Value = "Total"
Range("N6").Value = "n"
                                            What's the difference
Range("N7").Value = "i"
                                            between these?
For i = 2 To 144
    Range ("D" & i) . Select
    If Range ("D" & i). Value = "Male" Then
        Total = Total + Range ("E" & i).Value
        n = n + 1
    End If
    Range ("05") . Value = Total
    Range("06"). Value = n
    Range ("07"). Value = i
Next
Range("N1"). Value = "Male mean"
Range("N2").Value = Total / n
End Sub
```

Let's walk through this in Excel...

If...then...else

- If's can be made more flexible with an "Else" statement
- Currently, we have a single operation that's done if the If condition is true
- We can have another operation that executes if the If condition is false
- We can do the female mean at the same time

```
Dim MTotal As Double
Dim Mn As Integer
                                                   Male and female
Dim FTotal As Double
                                                   versions of total and n
Dim Fn As Integer
MTotal = 0
                                                   Initialize all to 0
Mn = 0
FTotal = o
Fn = 0
For i = 2 To 144
                                                 Will this always work???
    If Range ("D" & i). Value = "Male" Then
        MTotal = MTotal + Range("E" & i). Value
        Mn = Mn + 1
                                                   What to do if the If is
    Else
        FTotal = FTotal + Range("E" & i).Value FALSE
        Fn = Fn + 1
    End If
Next.
Range("N1").Value = "Male mean" 🚤 👚
                                                   Male and female means
Range ("N2") . Value = MTotal / Mn
                                                   labeled, calculated, and
Range("01").Value = "Female mean"
                                                   reported
Range("02").Value = FTotal / Fn
End Sub
```

```
Dim MTotal As Double
Dim Mn As Integer
Dim FTotal As Double
Dim Fn As Integer
MTotal = 0
Mn = 0
FTotal = o
Fn = 0
Range("04").Value = "Male"
Range("P4").Value = "Female"
Range("N5").Value = "Totals"
Range("N6").Value = "n's"
Range("N7").Value = "i"
For i = 2 To 144
    Range ("D" & i) . Select
    If Range ("D" & i). Value = "Male" Then
        MTotal = MTotal + Range("E" & i). Value
        Mn = Mn + 1
    Else
        FTotal = FTotal + Range("E" & i). Value
        Fn = Fn + 1
    End If
    Range ("05") . Value = MTotal
    Range("06").Value = Mn
    Range("07"). Value = i
    Range ("P5") . Value = FTotal
    Range ("P6") . Value = Fn
Next
Range("01"). Value = "Male mean"
Range ("02") . Value = MTotal / Mn
Range("P1"). Value = "Female mean"
Range ("P2") . Value = FTotal / Fn
End Sub
```

With debugging code

Let's see how it works...

If...then...elseif

- Can use this structure for cases in which we have more than one If criteria
 - In Excel, we did this by using an additional "if()" in place of the "else"
 - In VBA, we will add an "Elseif" statement after the first "If"
- Example: add a column for season of observation to bear data

Seasons

- We only have months, not dates
- Need to check each month, and set the "Season" column to:
 - Winter if Month = 1,2,3
 - Spring if Month = 4,5,6
 - Summer if Month = 7,8,9
 - Fall if Month = 10,11,12
 - Blank if Month is blank

```
(veneral)
```

```
Sub Seasons()
' MaleMeanHeadLength Macro
 Average of head lengths of male bears
 Keyboard Shortcut: Ctrl+Shift+H
Dim m As Integer
Range("M1").Value = "Season"
For i = 2 To 144
    Range ("C" & i) . Select
   m = Range("C" & i). Value ◀
    If m >= 1 And m <= 3 Then
        Range ("M" & i). Value = "Winter"
    ElseIf m >= 4 And m <= 6 Then
        Range("M" & i).Value = "Spring"
    ElseIf m >= 7 And m <= 9 Then
        Range("M" & i).Value = "Summer"
    ElseIf m >= 10 And m <= 12 Then
        Range("M" & i).Value = "Fall"
    Else
        Range("M" & i). Value = ""
    End If
Next
```

The code

For debugging

Makes the code easier to read

This will work as long as there are no months below 1 or greater than 12

End Sub

Let's see how it works...

Select case

- When you have a series of conditions to check, with different operations for each, you can use "Select Case" as an alternative to "If...then...elseif"
- The season example as a "Select Case"

```
Sub Seasons()
' MaleMeanHeadLength Macro
' Average of head lengths of male bears
 Keyboard Shortcut: Ctrl+Shift+H
Dim m As Integer
Range("M1").Value = "Season"
For i = 2 To 144
    Range("C" & i).Select
    m = Range("C" \& i).Value
    Select Case m
        Case Is >= 10
            Range("M" & i).Value = "Fall"
        Case Is >= 7
            Range("M" & i).Value = "Summer"
        Case Is >= 4
            Range("M" & i).Value = "Spring"
        Case Is >= 1
            Range("M" & i).Value = "Summer"
        Case Else
            Range ("M" & i). Value = ""
    End Select
Next
End Sub
```

Seasons with select case

For debugging

Makes the code easier to read

Try it out...