
  

Simulation modeling

What are models good for?
When are simulations preferable to analytical 

models?
When are stochastic simulations better than 

deterministic ones?



  

What is a model?

● An abstract representation of a system or 
process
– Physical models

– Verbal models

– Graphical models

– Mathematical models



  

Quick – which is a model?
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Why model?

● Models are ways of converting assumptions 
into predictions so can test them against data

● Models allow a form of “experimentation” not 
possible otherwise

● Models allow us to “constrain complexity” in our 
thinking



  

Constraining complexity

● The natural world is unimaginably complex
● As biologists, our job is to make sense of the 

living component of it
● Best we can do is to contemplate parts of it at any 

given time, so we need to simplify to understand
● The question is, how much can we simplify the 

world in our thinking before our conception of it 
becomes fundamentally inaccurate?

● In other words, we want our understanding of the 
world to be complex enough, but no more so



  

Example: global climate change

● We know that:
– CO2 is increasing in the atmosphere

– Humans emit CO2 when they burn 
fossil fuels

– CO2 is a greenhouse gas

– Global average temperature has 
been increasing

● We want to know whether:
– Anthropogenic CO2 is the cause of 

the increase in temperature



  

Just do the experiment

● All we have to do is to re-run the time since the 
industrial revolution, but without the CO2 
emissions

● If the planet still heats up due to all the other 
factors known to affect temperature, then CO2 is 
not to blame

● If the planet doesn't heat up without the CO2 
emissions, then CO2 is responsible

● Problem?



  

If you can't do the experiment in the 
real world, you can in a model

● Build a model of variation in climate that 
incorporates all the factors we know to be important 
in temperature regulation

● Run the model without an anthropogenic 
enhancement of CO2

● Run the model with an anthropogenic enhancement 
of CO2

● Compare the models to the temperature records 
we already have in hand

● What does this test?



  

Only predict the temperature 
increase correctly if we include 

anthropogenic effects



  

What do we learn from this model?

● We can reasonably accurately reproduce our 
existing temperature records
– Thus, our understanding of global climate is not bad

● We can't reproduce the existing temperature 
records unless we include anthropogenic CO2
– Thus, the existing temperature records support an 

effect of anthropogenic CO2 on global temperature



  

Some common dichotomies in 
math modeling

● There are many different kinds of models
● Some common characteristics that 

distinguish them:
– Deterministic vs. stochastic

– Analytical vs. simulation



  

Deterministic vs. stochastic

● Deterministic – Given the same inputs, the 
outputs are always the same

● Stochastic – The same inputs give different 
outputs
– The outputs can be described probabilistically, 

but can't be predicted exactly



  

Example: deterministic model of 
logistic growth in discrete time

● Populations grow exponentially when they are small
● As the population size increases, competition intensifies

– Birth rates decline

– Death rates increase

● When the population size is enough that births = deaths, 
the population stops growing

● This is the “carrying capacity” - the number of individuals 
that can be supported indefinitely

● Discrete time = time passes in chunks, such as years
● Model:

N t+ 1=N t×e
r(1−nt /K )



  

r = birth rate – death rate = 0.4
λ = 1.5

Smooth curve, gradually approaches carrying capacity, reaches a stable 
equilibrium

K



  

r = 1.8, λ = 6.0

Overshoot K, growth is -0.416

Undershoot K, growth is 0.338

Overshoots carrying capacity, damped oscillations before reaching a stable 
equilibrium



  

This is a deterministic model, but...

● You can't predict the population size at t+2 from 
the conditions at time t, you have to first 
calculate t+1

● “Damped” oscillations
– First an overshoot leads to negative growth

– Then, an undershoot leads to positive growth

– The over/undershoots decrease over time until 
carrying capacity is reached



  

r = 2.95, λ = 19.1

Deterministic chaos = unpredictable from initial conditions, no tendency towards 
reaching a stable equilibrium at K

But, the exact same trajectory will happen again if you use the same initial conditions



  

Different population sizes when r = 
0.40



  

Same model when r = 2.95



  

Correlation between populations 
with different starting sizes

r = 2.95 (chaotic dynamics)

r = 0.40 (stable equilibrium)



  

Constraining complexity – do we 
need to include randomness?

● The graphs look 
chaotic, do we need to 
explain the variations 
by something else 
(randomness)?

● Deterministic chaos 
looks superficially 
similar – does that tell 
us we need to look no 
further?



  

Why is randomness more complex 
than chaos?

● We can produce chaos with a deterministic 
model

● Randomness in biological systems comes from 
the unpredictable action of multiple factors 
acting at once



  

Birds can't increase by 20x in a year

Song sparrows would be lucky to 
fledge half that many each year

Many would not survive to the next 
year

Big dropoffs are possible, since 
mortality can be up to 100%

But, the biggest increases in a 
year are 4x – not big enough to 
produce deterministic chaos



  

We know there are environmental 
influences on r, K, and N

t

Crabs have the capacity to 
increase their population 20x in a 
year – massive reproductive rates

But, they are sensitive to the 
environment, which varies 
randomly from year to year

Birds are also sensitive to changes 
in their environments from year to 
year



  

Many biological systems are subject 
to random variation

● Some processes may be truly random
– Random assortment of alleles during meiosis

– Random sampling of alleles in a population over 
time

● May be so complex that it isn't possible to know 
all the factors that affect the system – model 
the system as stochastic



  

Making a model complex enough

● If we're trying to understand why song sparrow 
populations vary like they do, we will need to 
make the models complex enough to include all 
the most important factors

● We know from field data that the parameters 
vary over time

● Building a model in which the parameters don't 
vary over time will be too simple to reproduce 
the dynamics we see



  

Stochastic version of the model

● A stochastic model will not be the same any two 
times through, even if you start with the same 
conditions

● We'll specify an average growth rate, but each 
time step it will be a random draw from a 
distribution of possible values

● Even when the growth rate is low enough that 
the deterministic model smoothly approaches K, 
the stochastic version will have random variation



  

r as a distribution

Mean r is 0.4
Standard deviation is 1
95% of r's will fall between -1.6 and 2.4
Actual r for a year will be a draw from this distribution



  

A few runs through – all starting at n 
= 10, all with K = 100

Stable equilibrium 
if n = K

N t+ 1=N t×e
r(1−nt /K )



  

Other sources of randomness

● This model only treated r as being subject to 
randomness

● What if K also varies at random?
● We expect this – K is a function of e.g. food 

levels, which will vary randomly over time
● Will we ever reach a stable equilibrium if K 

varies over time?

N t+ 1=N t×e
r(1−nt /K )



  

Both r (s = 0.5) and K (s = 10) are 
stochastic

N t+ 1=N t×e
r(1−nt /K )



  

Random mortality

● Some sources of mortality occur at random, and take out some 
proportion of the population
– “Density independent” = the amount of effect doesn't depend on the number 

of organisms in the population

– Weather events are often like this

● We can simulate this by randomly selecting some proportion of the 
population to be taken out each year
– i.e. if we choose 5% density independent mortality, then we'll lose 5% 

regardless of how many are there

– “Density dependent” only if we lose a larger proportion when the population 
is larger

● Set a mean level, a standard deviation, then randomly select from 
the distribution each year

● Will we reach a stable equilibrium? Will carrying capacity be evident?



  

r and K are stochastic, random 
mortality (mean = 5%, s = 2%)



  

Analytical vs. simulation models

● Analytical – Solutions are mathematically “well formed,” 
and can be expressed as equations
– e.g. if b > d, r > 0 
(if births > deaths, population growth will be positive)

● Simulation – Model structures are too complicated to be 
expressed as simple equations
– Generally, simulations are done with a computer

– Often stochasticity is included

– Results of simulations are collected and studied, much like we 
study the real world

– We will generally need to run the model many times and see 
what the average result is, as well as variability in results among 
runs



  

Example analytical model: sinks and 
traps

● From Kristan 2003
● Model of habitat selection 

by animals
● Assume that habitat is 

limited in availability
● Assume they when habitat 

is not completely filled, 
they will take the most 
attractive habitat available



  

Working with the model

● Knowing the equations for each of the curves, 
it's possible to solve for various quantities of 
interest

● But, the math gets a little hairy
● For example, the equation for the mean 

attractiveness of occupied habitat is:



  

Computer simulations

● Computer simulation models allow you to address complex 
questions without the complex mathematics that would be 
required from an analytical model

● Advantages
– The complexity can be reduced by using algorithms in the place of 

equations

– Different levels can be modeled (populations, individuals)
– Randomness is easy to incorporate

● Disadvantages:
– Approximate, numerical results rather than exact, analytical solutions

– Results have to be studied to infer solutions, rather than simply 
calculating them 



  

Example: modeling disease spread

● Analytical models of spread of epidemics are very complex
● If the spatial spread of the disease is to be modeled, then the math is 

even more complicated
● A simpler approach is to 

use a “cellular automata” 
model

● Each cell of a grid is 
established as susceptible 
(individuals, population)

● Infection is introduced in 
one or more cells

● Rules for spread: must be 
susceptible, must be in an 
adjacent cell



  

Running the model

We can ask 
questions like:

How quickly will it 
spread?

What if we 
quarantine people 
with the disease? 
Is it too late by the 
time they start 
showing 
symptoms?



  

More realistic layout

More realistic – spread will be along the colored shapes, 
where the travel corridors are



  

Adding randomness to a computer 
simulation

● Simple matter of specifying a distribution for 
any parameter subject to randomness, drawing 
from it each step of the simulation

● With a stochastic simulation, results will never 
be identical twice

● Must be run repeatedly (hundreds, thousands, 
tens of thousands of times), and the outputs 
studied



  

Simulating our stochastic population

● Run 1000 times for 100 years each
● Population sizes at each year recorded each 

time
● Mean size and range of 95% of runs 

identified, plotted

● N0 = 10 for all

● If Nt < 0.5, then the population is extinct – set 
population to 0



  

Setup in Excel – 
first run



  

Macro recorder

1. Copy the population sizes

2. Switch to results sheet, 
paste-special the values 
transposed into the first row

3. Turn off the macro recorder



  

Add a loop

Select the right sheet

Select the pop sizes

Switch to results sheet

Select the first output cell

Paste special transposed the values



  

Run it, analyze the results



  

Mean, 97.5th and 2.5th percentiles, 
max, and min for each time



  

What do we learn?

● On average, pop size is fairly stable
● Population didn't go extinct in any run
● The mean was lower than K of 100
● The maximum and minimum values could be quite 

different from the mean, could even be different from 
the 2.5 and 97.5 percentile – occasional very high or 
very low population sizes can happen by chance

● What about more variation? Increase variation in r to 
0.6



  

Mean, 97.5th and 2.5th percentiles, 
max, and min for each time



  

What did we learn?

● Still get an average that's fairly stable
● But, now some very large numbers and some 

extinctions (0.1 to 0.3% of runs)
● What if we put variation in r back to 0.4, and 

increase variation in carrying capacity to 20?



  

Mean, 97.5th and 2.5th percentiles, 
max, and min for each time



  

Variation in random mortality

● Set variation in K back to 10
● This time, make the average random mortality 

equal to 0, but set standard deviation to 20%
● Thus, small reductions will be most common, 

but large reductions will happen occasionally
– Decreases of 40% will happen 5% of the time, and 

decreases of 60% will happen 1% of the time



  

Mean, 97.5th and 2.5th percentiles, 
max, and min for each time



  

Take-home re: computer simulation

● Computer simulations let us tackle complicated 
problems relatively simply

● The solutions will be numerical, rather than 
analytical

● We can incorporate randomness easily
● Once the simulation is set up, we can experiment 

with it in ways we can't in the real world
● But beware: computer simulations are 

abstractions of reality – when real experiments 
are possible, prefer them
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