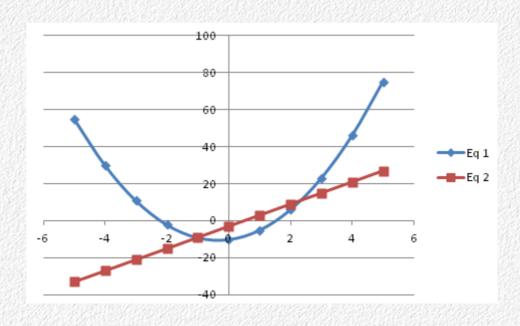
Numerical approaches to analysis

Using numerical solutions to problems The Solver in Excel


Analytical vs. numerical solutions

- Analytical solutions = solving for the term of interest in an equation
- Numerical solutions = approximate solutions found with iterative, trial and error methods
- Numerical solutions are approximate, but if the approximation is good enough it doesn't matter
- Example: solutions to a system of equations

Solutions to equations

- Two equations, one linear and one quadratic
 - $-y = 3x^2 + 2x 10$
 - -y = 6x 3
- Roots of the equations: where do the lines cross?
 - That is, what values of x have the same y for both equations?
- First, graph them how many solutions should we expect?
- There is an analytical solution to this

How many solutions places do the line cross? Plickers...

The analytical solution

$$y=3x^{2}+2x-10$$

 $y=6x-3$

$$6x - 3 = 3x^2 + 2x - 10$$

 $0=3 x^{2}-4 x-7$ Quadratic equation in standard form, find roots with quadratic formula \rightarrow

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\frac{-(-4)+\sqrt{(-4)^2-4(3)(-7)}}{2(3)}$$

$$x = 2\frac{1}{3}, \quad y = 11$$
Plug x into
either equation
to get y
$$x = -1, \quad y = -9$$

$$\frac{-(-4)-\sqrt{(-4)^2-4(3)(-7)}}{2(3)}$$

Numerical approach

• Re-write the equations as: $0=3x^2+2x-10-y$

$$0 = 6 x - 3 - y$$

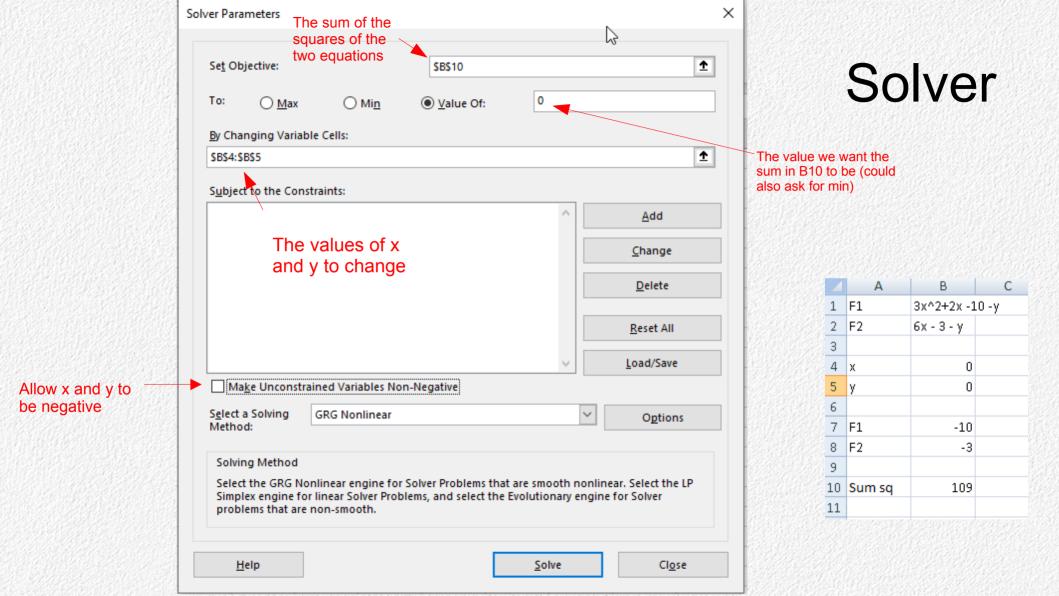
- Set values for X and Y to be the same in both equations
 - Initial guesses will make the equations not equal 0 at first
 - Change the values of X and Y until both equations equal 0
- We'll get solutions for both X and Y at the same time

Numerical method – in Excel

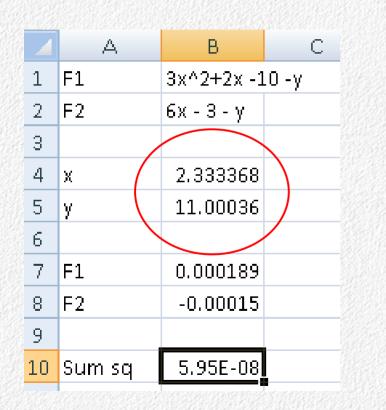
	Α	В	С	
1	F1	- 3x^2+2x -1	.0 - y	The initial
2	F2	6x - 3 - y		setup
3				
4	Х	0		1. Enter initial guesses for x
5	у	0		and y
6				
7	F1	-10		2. Calculate F1 and F2
8	F2	-3		using x and y
9				-3. Square F1
10	Sum sq	109	4	and F2 and sum them
11			1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Try new set of numbers for x and y

6633	1889 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1997 - 1997 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -	723382833838522322233		
	A	В	С	
1	F1	3x^2+2x -1	.0-у	
2	F2	6x - 3 - y		
3				1. Change
4	Х	1		the values of x and y
5	у	1		
6				2. Calculate F1 and
7	F1	-6		F2 using new values
8	F2	2		for x and y
9				3. Sum of squared
10	Sum sq	40		values gets closer to (
11				 moving in the right direction!


Not 0 yet...

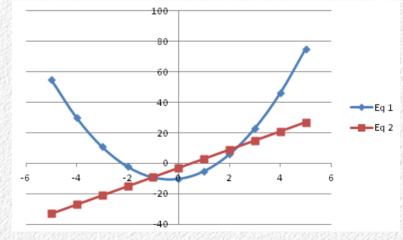
- Better
- Blind search could take a really long time
- There are good search algorithms that converge on solutions quickly
- Excel's Solver uses these


	А	В	С
1	F1	3x^2+2x -1	.0 - y
2	F2	6x - 3 - y	
3			
4	х	2	
5	у	10	
6			
7	F1	-4	
8	F2	-1	
9			
10	Sum sq	17	
11			

Optimization algorithms used by Excel's Solver

- Excel picks a method to use based on the formulas in the spreadsheet
 - For linear problems, uses the Simplex method
 - For non-linear problems it uses a generalized gradient method
- Both require initial guesses of the solutions
- Both can accept constraints (i.e. only positive values considered)
- Both are iterative (i.e. new values chosen until no more improvement at the level of precision desired)

The first solution



Solve	er Results
Solver found a solution. All Constraints and op conditions are satisfied.	Re <u>p</u> orts
<u>Keep Solver Solution</u> Restore Original Values	Answer Sensitivity Limits
Return to Solver Parameters Dialog	☐ O <u>u</u> tline Reports
<u>Q</u> K <u>C</u> ancel	Save Scenario
Solver found a solution. All Constraints and opt	imality conditions are satisfied.
When the GRG engine is used, Solver has found is used, this means Solver has found a global o	d at least a local optimal solution. 🏹 hen Simplex optimal solution.

 $x=2\frac{1}{3}, y=11 \leftarrow Do they match?$ Plickers...

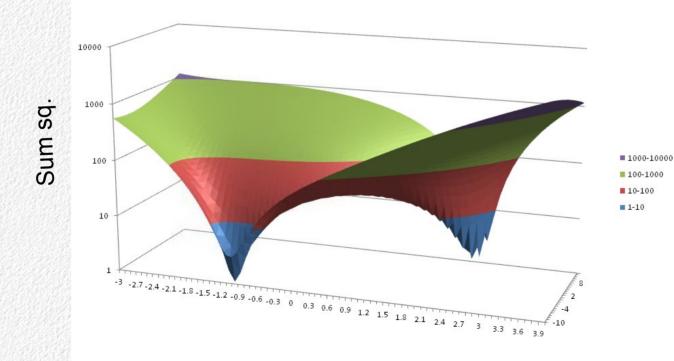
What about the second solution?

- There are two points of intersection of the lines \rightarrow two solutions
- Our trial and error approach gave us one, now we need
 the other
- To get the second, try another starting point closer to the other solution and run Solver again

Start closer to the second solution...

	А	В	С
1	F1	3x^2+2x -1	.0 -y
2	F2	6x - 3 - y	
3			
4	Х	-1	
5	у	-10	
6			
7	F1	1	
8	F2	1	
9			
10	Sum sq	2	
11	17587973989759977479974334	2-12-5-17-17-17-17-17-17-17-17-17-17-17-17-17-	

Second solution


	Α	В	С
1	F1	3x^2+2x -1	_
2	F2	6х-З-у	•
3			
4	х /	-1	
5	у	-8.99996	
6			
7	F1	-5.6E-05	
8	F2	-1.4E-05	
9			
10	Sum sq	3.32E-09	
11			

Note that this works best when you know how many solutions to expect – graphing is a very important first step

If you don't know, choose several different starting positions to increase the chance you'll find the solutions

$$x = -1, y = -9$$

Sum of squared functional values at different x,y values

The slope of the surface determines which solution you'll find

Usually, whichever you start closer to is the one you'll find

Numerical methods in biology

- Some equations can't be solved analytically, have to use numeric methods
- Example: life tables
 - Data on age-specific birth and death rates for populations
- The basic data are:
 - The number of individuals alive each year, starting from birth until all are dead = n_x
 - The number of female offspring per females of age x is b_x

Life table for a squirrel population

	А	В	С
1	Age	n(x)	b(x)
2	0	1000	0
3	1	458	1.28
4	2	352	2.28
5	3	229	2.28
6	4	154	2.28
7	5	99	2.28
8	6	87	2.28

Euler's equation

- Population growth rate is the balance between birth and death rate, r = birth rate – death rate
- If r is positive, the population is growing
- The best estimate of r from a life table is the value that satisfies Euler's equation:

$$1 = \sum l_x b_x e^{-rx}$$

- x (age), I_x , b_x are all known, e is a constant
- Equation can't be solved analytically, but we can find r numerically with the Solver

Convert number alive (n_x) to proportion alive (I_x)

	А	В	С	D
1	Age	n(x)	b(x)	l(x)
2	0	1000	0	1
3	1	458	1.28	0.458
4	2	352	2.28	0.352
5	3	229	2.28	0.229
6	4	154	2.28	0.154
7	5	99	2.28	0.099
8	6	87	2.28	0.087
				5754538557756775327387853538

Multiply proportion alive by birth rate $(I_x b_x)$

	А	В	С	D	E
1	Age	n(x)	b(x)	l(x)	l(x)b(x)
2	0	1000	0	1	0
3	1	458	1.28	0.458	0.58624
4	2	352	2.28	0.352	0.80256
5	3	229	2.28	0.229	0.52212
6	4	154	2.28	0.154	0.35112
7	5	99	2.28	0.099	0.22572
8	6	87	2.28	0.087	0.19836

In Excel

Why F\$10? Plickers...

28/20	22.14.18.22	1999/100	ちちちちろんちむ	1945 6 6 6 6 1				T IICKC/3
		F8	•	- (<i>f</i> _* =E8*1	EXP(-F\$10*4	48)	
	Α	В	С	D	E	F	G	
1	Age	n(x)	b(x)	I(x)	l(x)b(x)	Euler		
2	0	1000	0	1	0	0		
3	1	458	1.28	0.458	0.58624	0.58624		
4	2	352	2.28	0.352	0.80256	0.80256	and the second se	
5	3	229	2.28	0.229	0.52212	0.52212		
6	4	154	2.28	0.154	0.35112	0.35112		
7	5	99	2.28	0.099	0.22572	0.22572		
8	6	87	2.28	0.087	0.19836	0.19836		
9								
10					r	0		
11								1. Solver will
12					Sum Euler	2.68612		change this
13						1		onungo ano

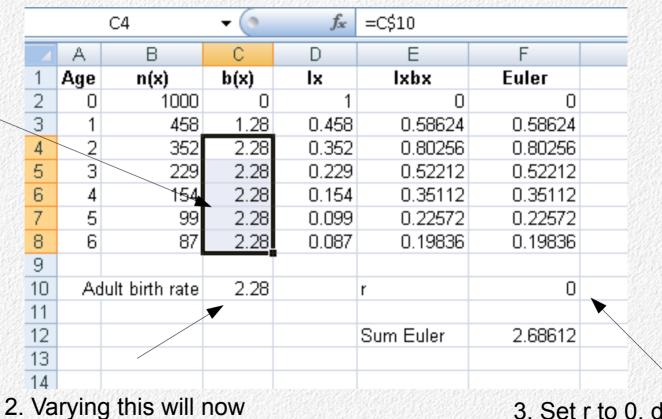
Solver setup

Get Ita ~		Generation for the second seco	Connections			$ \begin{array}{c c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
& Tra	ansform Data	Queries & Conn	ections	Data Type	s	Sort & Filter
.2	• :	$\times \checkmark f_x$				
	А	В	С	D	E	F
	Age	n(x)	b(x)	l(x)	l(x)b(x)	l(x)b(x)e^-rx
2	0	1000	0	1		0 0
ģ.	1	458	1.28	0.458	0.5862	0.58624
ł	2	352	2.28	0.352	0.8025	0.80256
3	3	229	2.28	0.229	0.5221	0.52212
3	4	154	2.28	0.154	0.3511	0.35112
'	5	99	2.28	0.099	0.2257	0.22572
3	6	87	2.28	0.087	0.1983	0.19836
)						
C					r	0
1						
2					Sum Eule	er 2.68612
3						
4						

			Calvar	
olver Parameters				×
Se <u>t</u> Objective:		SFS12		Ť
To: <u>M</u> ax	◯ Mi <u>n</u>	() <u>V</u> alue Of:	1	
<u>B</u> y Changing Variat	ole Cells:			
SFS10				Î
Subject to the Con	straints:			
			^	<u>A</u> dd
				<u>C</u> hange
				<u>D</u> elete
				<u>R</u> eset All
			~	Load/Save
Ma <u>k</u> e Unconstr	ained Variables No	on-Negative		
S <u>e</u> lect a Solving Method:	GRG Nonlinear		~	O <u>p</u> tions
	r linear Solver Pro	r Solver Problems tha blems, and select the		
<u>H</u> elp			<u>S</u> olve	Cl <u>o</u> se

Solution

-=== [Re Re	C Queries & C C Properties All ~ & Edit Links		_	ocks ⊽ Z↓	Sort Filter	pply Text to T				
& Tran	sform Data	Queries & Conne	ctions	Data Types	;	Sort & Filter	Data Tools Forecast Analyze A				
2	-	$\times \checkmark f_x$					×				
	А	В	С	D	Е	F	G H I I K I				
8	Age	n(x)	b(x)	l(x)	l(x)b(x)	l(x)b(x)e^-rx	Solver Results X				
<u>.</u>	0	1000	0	1	0	0	Solver found a solution. All Constraints and optimality conditions are satisfied. Reports				
3	1	458	1.28	0.458	0.58624	0.38731424	Kep Solver Solution Sensitivity				
).	2	352	2.28	0.352	0.80256	0.35031082	Acep solver solution Sensitivity Limits				
2	3	229	2.28	0.229	0.52212	0.15056859					
;	4	154	2.28	0.154	0.35112	0.06689716	Return to Solver Parameters Dialog Outline Reports				
'	5	99	2.28	0.099	0.22572	0.02841255					
3	6	87	2.28	0.087	0.19836	0.01649614	QK Cancel Save Scenario Save Scenario				
4							Solver found a solution. All Constraints and optimality conditions are satisfied.				
С				r		0.4144929	When the GRG engine is used, Solver has found at least a local optimal solution. When Simplex LP				
1							is used, this means Solver has found a global optimal solution. When Simplex LP				
2					Sum Euler	0.9999995					
3											
4											


r = 0.414 is the growth rate

What if... analysis

- We could ask, how low does adult birth rate have to go for the population to stop growing?
- As population size increases females can't get enough food to reproduce successfully
- Assuming survival doesn't change, we can estimate what the reproductive rate would be when the population growth is zero

Set up in Excel

1. Set these to all point to cell c10

change all the adult birth rates

3. Set r to 0, don't vary it

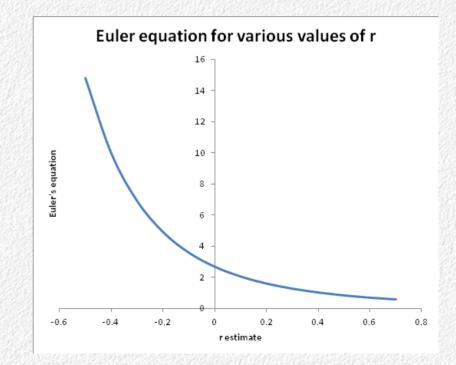
Like before, set the sum of Euler's equation to 1

Solver setup

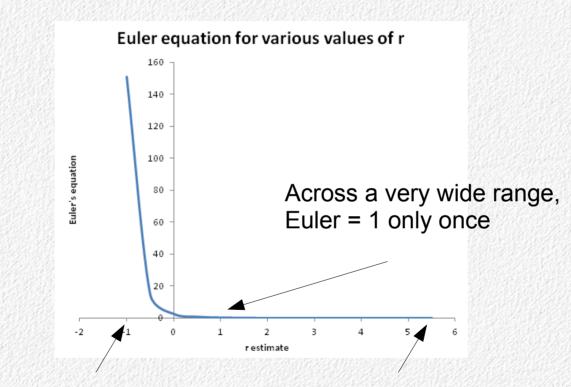
F\$12	
1 312	E
Value Of: 1	
\searrow	
	E
	N

But, now change adult birth rate instead of growth rate

C4			- ()	f_x	=C\$10	
4	Α	В	С	D	E	F
1	Age	n(x)	b(x)	lx	lxbx	Euler
2	0	1000	0	1	0	0
3	1	458	1.28	0.458	0.58624	0.58624
1	2	352	2.28	0.352	0.80256	0.80256
5	3	229	2.28	0.229	0.52212	0.52212
6	4	154	2.28	0.154	0.35112	0.35112
7	- 5	99	2.28	0.099	0.22572	0.22572
8	6	87	2.28	0.087	0.19836	0.19836
9						
0	Ad	ult birth rate	2.28		r	0
1						
2					Sum Euler	2.68612
3						
4						


Solver's solution

F12			-	f_{x}	=SUM(F2:F8)	
4	Α	В	С	D	E	F
1	Age	n(x)	b(x)	İx	lxbx	Euler
2	0	1000	0	1	0	0
3	1	458	1.28	0.458	0.58624	0.58624
4	2	352	0.4492	0.352	0.1581359	0.1581359
5	3	229	0.4492	0.229	0.10287819	0.10287819
6	4	154	0.4492	0.154	0.06918446	0.06918446
7	5	99	0.4492	0.099	0.04447572	0.04447572
8	6	87	0.4492	0.087	0.03908473	0.03908473
9						
0	Ac	lult birth rate	0.4492		r	0
1			◀			
2					Sum Euler	0.999999
3						
Δ						


Birth rate would need to be 0.4492 for the population to stop growing

How do we know there is only one solution for r?

- For a numerical result, can't know for sure
- Some ways to check
 - Graph the result across all plausible values of r
 - Really huge r would be hard to miss biologically
 - Try different starting values in Solver to see if the solution is always the same

Wider range of possible r's

40% as many next year as this year

245 times as many next year as this year