
  

Curve fitting with least squares

Fitting functions to data



  

Fitting functions to data

● Common way to analyze data
● Two useful purposes

– Assess the relationship between variables, obtain a 
predictive function

– Obtain estimates of parameters

● We will focus today on “least squares” 
approaches
– Least squares criterion: The line of best fit to the data 

minimizes the squared deviations between the data 
and the line



  

Simple linear regression

● Used to assess the straight-line relationship 
between two numeric variables

● Two variables
– Independent, or predictor
– Dependent, or response

● The independent is treated as the cause of 
change in the dependent

● Deviation from the line is treated as random 
variation, and only in the response variable



  

Regression of kilocalories on water 
content in various foods



  

Linear functions are easy to solve 
analytically

● There are equations for slope and intercept:

● Equations also available for standard errors and 95% 
confidence intervals of the estimates

● But, some equations can't be so easily solved analytically
● Instead, we can use numerical approaches to fit the line, 

and obtain standard errors

ŷ=a+ b x

b=
∑ (x i− x̄)( y i− ȳ)

∑ (x i− x̄)
2

a= ȳ−b x̄



  

Least squares

● Want the best fit line – how do we know we have it?
● Least squares criterion: the best fit line minimizes the squared 

deviations between the line and the data
– Sum of squared deviations between 

the data and the line is the 
“residual sums of squares”

– Sum of squared deviations of y data 
from y mean is the 
“total sums of squares”

– Variation accounted for by the line is 
“explained” or “model sums of squares”

● r2 = coefficient of determination
– “Explained” sums of squares / total sums of squares
– (Total SS – residual SS)/total SS



  

Residuals
Residual = observed – predicted value

Vertical differences only

Predicted value = average of 
y expected for a given value 
of x



  

Numerically fitting data to a function

● Start with a set of x and y data
● Use a function that predicts y from x, using any 

(reasonable) starting values for the unknown 
parameters (slope and intercept)

● Calculate the residuals, then square them
● Sum the squared residuals
● Use Solver to minimize the sum of squared 

residuals by changing the slope and intercept 
parameters



  

In Excel
Predicted from 
straight line 
formula using 
initial parameters 
in B118 and B119

Squared 
deviations 
between observed 
and predicted 
kcal's

Sum of squared 
deviations – 
minimize with 
Solver



  

Close enough to start...

Slope = -2
Intercept = 300



  

As Solver changes slope and 
intercept...

Slope = -5
Intercept = 600

Slope = -10.19
Intercept = 1003.7

Intermediate step

Final solution



  

Match between analytical and 
numeric solutions

Slope = -10.19
Intercept = 1003.7

Very close agreement!



  

Problem: Solver does not provide 
standard errors

● Standard errors are measures of precision of 
estimates
– A new set of data will give us different estimates
– SE's used to measure how different we expect them to be

● They are also used for statistical hypothesis testing, 
and for calculating confidence intervals

● The slope and intercept estimates by themselves are 
not terribly useful without SE's

● We can estimate the SE's numerically with a little 
work, using “finite difference approximation”



  

Basis for numerical SE estimation

● The predicted values for the line are based on the 
estimated parameters

● If we vary one of the parameters at a time, we will 
change the predicted values by some amount

● Amount of change in predicted value per unit 
change in parameter value can be measured
– Big changes in predicted value indicate better 

estimates
– Small changes in predicted value indicate poorer 

estimates



  

On a proportional basis, 
changing slope or 
intercept by ± 1% has 
about the same affect on 
the line

What about on an 
absolute basis?



  

Fit of the line is much more sensitive 
to change in slope than change in 
intercept

So, the estimate of the slope will be 
more precise – the range of possible 
slopes that are consistent with the 
data is narrow



  

Finite difference approximation of 
SE

● Standard errors can be calculated using a matrix (P) of 
summed squared differences in predicted value per unit 
change in the estimates

● These approximate the first partial derivative of the line 
with respect to the estimate
– Derivatives = slopes of lines tangent to a curve
– Partial derivatives = derivative with respect to just one term, 

treating all others as constants

● The inverse of P can be used to estimate standard errors
● We can calculate P using tiny, finite changes to the 

parameters



  

The P matrix for the coefficients of a 
line

● Derivatives 
used for 
continuous 
functions, 
instantaneous 
change

● We will use 
this as an 
approximation

s = slope
i = intercept

Squared differences

Cross products

P=[
Σ(

Δ f
Δ s

)
2

Σ
Δ f
Δ s

Δ f
Δ i

Σ
Δ f
Δ s

Δ f
Δ i

Σ(
Δ f
Δ i

)
2 ]



  

Finite difference approximation of 
the partial derivatives

1) Start with the Solver estimates

2) Change the slope by a tiny amount

3) Calculate the change in the predicted values, 
divided by the change in the parameter

4) Return the slope to its Solver-estimated value

5) Repeat with the intercept

6) Calculate squares and cross-products, and 
sum them to estimate P



  

1. Predicted values from Solver 
estimates

Calculated as:

-10.1904 (water) + 1003.709



  

2. Change the slope – multiply slope 
by 1.000001

Slope changed

Intercept kept constant

Slight change 
in predicted 
values



  

3. Change in predicted value divided 
by change in slope

÷ =



  

4,5. Return slope to Solver value, 
repeat with intercept

÷ =



  

Calculating sums of squares and 
cross products the “easy” way

● We just made a matrix with columns dY/ds and 
dY/di

● Want to square these and sum them for the 
main diagonal of P

● We want to multiply them together and sum 
them for the off-diagonals

● We can do this in one calculation using matrix 
multiplication – multiply the matrix by its 
transpose

● What's a transpose? 



  

Transpose of a matrix

● A matrix is “transposed” by swapping the rows 
and columns

A=[a b
c d ] A '=[a c

b d ]

A '×A=[a c
b d ]×[a b

c d ]=[aacc abcd
badc bbdd ]

Pre-multiplying a matrix by its transpose gives sums of squares and 
cross products



  

6. Calculate sums of squares and 
cross-products of dY/ds and dY/di

dY/ds and 
dY/di 
calculated by 
altering slopes 
and intercepts

dY/ds and 
dY/di, 
transposed

Matrix multiplication of dY/ds, 
dY/di by transposed dY/ds, dY/di

Array formula 
for matrix 
multiplication



  

Finally, calculate the standard errors

● To calculate the standard errors from the P 
matrix, we need to:
– Invert the matrix
– Multiply the square root of each of the values on the 

main diagonal by the standard error of Y

● This will give us both the standard errors we 
need

● What's a matrix inverse?



  

Matrix inverse

A=[a b
c d ] A×A−1

=I=[1 0
0 1]

We will let the computer solve inverses for us...

A×I=[a b
c d ]×[1 0

0 1]=?

For a single number, a, the inverse is 1/a
a x 1/a = 1



  

The inverse of our P matrix



  

Standard errors

Standard error of y is:

SE of slope is:

SE of intercept is:

SE (Y )=√ SSYn−2=10.987

SE ( s)=√P−1
11 SE (Y )=√0.000152(10.987)

SE ( s)=√P−1
22 SE (Y )=√1.150391(10.987)



  

Tests of significance for coefficients

● The coefficient divided by its standard error can 
be tested as a t-value

● Use the error degrees of freedom for the model
● The test is whether the coefficient is equal to 0

– If you fail to reject this, the coefficient isn't 
significant, isn't needed in the model

– If you reject this, the coefficient is significant, is 
needed in the model



  

Significance tests

Coefficient Estimate SE T df p

s -10.19 0.1355
-10.19/0.1355 

= -75.22
113 2.3 x 10-98

i 1003.71 11.78
1003.71/11.78 

= 85.17
113 2.4 x 10-104



  

A trickier problem

● Sometimes what we can measure and what we 
want to know are two different things

● If we know how the quantity we want to know is 
related to the things we can measure, we can:
– Use a function that shows the relationship
– Fit the function to the data we can measure
– Use the parameters from the best fit line as 

estimates of the quantities we are interested in

● Example: photosynthesis data



  

Net photosynthesis as a function of 
light intensity



  

A model of photosynthesis

● A mechanistic model that explains the relationship 
between light intensity and net photosynthesis is:

● By fitting this function to the data, it's possible to 
get estimates of each of the parameters

● The parameters have biological interpretations

Pnet=
ΦQ+ Pmarea−√(ΦQ+ Pmarea)

2
−4θΦQPmarea

2θ



  

Φ

Q

Pmarea

θ

= Phi = Maximum quantum yield (CO
2
 molecules fixed per photon)

= Maximum area-based rate of net photosynthesis (CO
2
 per m2 per s)

= Theta = Convexity of the curve (dimensionless – adjusts curve shape)

= Light intensity (predictor variable, set by photosynthesis system)

To be estimated

Pnet = Net photosynthesis (response variable, measured by photosynthesis system)

Known (the data)



  

In Excel - setup
The data

Parameters to estimate

Predicted Pnet from equation

Squared deviations

Sum of 
squared 
deviations

Graph of observed 
and predicted 
(based on starting 
values of 
parameters) 



  

Solver settings



  

Solver's solution



  

Standard errors

● We can use the same methods we used for 
regression

● Only difference is now we have three 
parameters



  

Calculate deltasPredicted from 
modified 
parameters

Predictions from 
Solver's estimates

Change in 
predicted value 
divided by change 
in parameter value



  

Calculate P (matrix, not P
net

)



  

Invert P, calculate standard errors


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

