Curve fitting with least squares

Fitting functions to data

Fitting functions to data

- Common way to analyze data
- Two useful purposes
 - Assess the relationship between variables, obtain a predictive function
 - Obtain estimates of parameters
- We will focus today on "least squares" approaches
 - Least squares criterion: The line of best fit to the data minimizes the squared deviations between the data and the line

Simple linear regression

- Used to assess the straight-line relationship between two numeric variables
- Two variables
 - Independent, or predictor
 - Dependent, or response
- The independent is treated as the cause of change in the dependent
- Deviation from the line is treated as random variation, and only in the response variable

Regression of kilocalories on water content in various foods

Linear functions are easy to solve analytically

• There are equations for slope and intercept: $\hat{y} = a + bx$

$$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} \qquad a = \overline{y} - b\,\overline{x}$$

- Equations also available for standard errors and 95% confidence intervals of the estimates
- · But, some equations can't be so easily solved analytically
- Instead, we can use numerical approaches to fit the line, and obtain standard errors

Least squares

- Want the best fit line how do we know we have it?
- Least squares criterion: the best fit line minimizes the squared deviations between the line and the data
 - Sum of squared deviations between the data and the line is the "residual sums of squares"
 - Sum of squared deviations of y data from y mean is the "total sums of squares"
 - Variation accounted for by the line is "explained" or "model sums of squares"
- r² = coefficient of determination
 - "Explained" sums of squares / total sums of squares
 - (Total SS residual SS)/total SS

Residuals

Numerically fitting data to a function

- Start with a set of x and y data
- Use a function that predicts y from x, using any (reasonable) starting values for the unknown parameters (slope and intercept)
- Calculate the residuals, then square them
- Sum the squared residuals
- Use Solver to minimize the sum of squared residuals by changing the slope and intercept parameters

In Excel

Predicted from straight line formula using initial parameters in B118 and B119

		A	В	С	D	E	
						Squared	
	1	food	water	kcal	Predicted kcal 🔎	deviations	
	2	watercress	95.11	28	=B\$118*B2+B\$119	=(C2-D2)^2	
8	3	pak-choi cabbage	95.32	34	109.36	5679.1	
	4	iceberglettuce	95.64	36	108.72	5288.2	
	5	white gourd	95.54	36	108.92	5244.7	
ġ	6	green leaf lettuce	95.07	38	109.86	5163.8	
	7	cucumber	95.23	40	109.54	4835.8	
	8	radish	95.27	41	109.46	4686.8	
	9	nopales	94.12	41	111.76	5007.0	
ī	13	plantains	65.28	316	169.44	21479.6	
1	14	soybeans	67.5	381	165	46440.9	
1	15	garlic	58.58	386	182.84	41274.4	
ı	16	prairie turnips	60.69	405	178.62	51248.4	R M
1	17						
1	18	Slope	-2		Sum Sq.	452408.5	
1	19	Intercept	300				
1	20	そうそうてをわせた たけ さわにて さんぼう しん ふけん ひとうどう しょうかん	1551 10 143 64450 044		REPARADIT STOLEN ADDITATION SPORT D	ていがく ひとうけいがんがん	
				SINGULT AND STOP	AN 19 A C 2 SHE AL P G SHE SHE		

Squared deviations between observed and predicted kcal's

Sum of squared deviations – minimize with Solver

Close enough to start...

Slope = -2 Intercept = 300

As Solver changes slope and intercept...

Slope = -10.19Intercept = 1003.7

Match between analytical and numeric solutions

Very close agreement!

Slope = -10.19Intercept = 1003.7

Problem: Solver does not provide standard errors

- Standard errors are measures of precision of estimates
 - A new set of data will give us different estimates
 - SE's used to measure how different we expect them to be
- They are also used for statistical hypothesis testing, and for calculating confidence intervals
- The slope and intercept estimates by themselves are not terribly useful without SE's
- We can estimate the SE's numerically with a little work, using "finite difference approximation"

Basis for numerical SE estimation

- The predicted values for the line are based on the estimated parameters
- If we vary one of the parameters at a time, we will change the predicted values by some amount
- Amount of change in predicted value per unit change in parameter value can be measured
 - Big changes in predicted value indicate better estimates
 - Small changes in predicted value indicate poorer estimates

Fit of the line is much more sensitive to change in slope than change in intercept

So, the estimate of the slope will be more precise – the range of possible slopes that are consistent with the data is narrow

Finite difference approximation of SE

- Standard errors can be calculated using a matrix (P) of summed squared differences in predicted value per unit change in the estimates
- These approximate the first partial derivative of the line with respect to the estimate
 - Derivatives = slopes of lines tangent to a curve
 - Partial derivatives = derivative with respect to just one term, treating all others as constants
- The inverse of P can be used to estimate standard errors
- We can calculate P using tiny, finite changes to the parameters

The P matrix for the coefficients of a line

s = slope i = intercept

- Derivatives used for continuous functions, instantaneous change
- We will use this as an approximation

Finite difference approximation of the partial derivatives

- 1) Start with the Solver estimates
- 2) Change the slope by a tiny amount
- 3) Calculate the change in the predicted values, divided by the change in the parameter
- 4) Return the slope to its Solver-estimated value
- 5) Repeat with the intercept
- 6) Calculate squares and cross-products, and sum them to estimate P

1. Predicted values from Solver estimates

2. Change the slope – multiply slope by 1.000001

				Predicted
1	food	water	kcal	kcal
2	watercress	95.11	28	34.489
3	pak-choi cabbage	95.32	34	32.349
4	iceberglettuce	95.64	36	29.088
5	white gourd	95.54	36	30.107
6	green leaf lettuce	95.07	38	34.897
7	cucumber	95.23	40	33.267
110	taro root	70.64	290	283.851
111	palm hearts	69.5	298	295.469
112	yam	69.6	306	294.449
113	plantains	65.28	316	338,472
114	soybeans	67.5	381	315.850
115	garlic	58.58	386	406.749
116	prairie turnips	60.69	405	385.247
117				
118	Slope	-10.1905		
119	Intercept	1003.709		
100				

Slight change in predicted values

Slope changed

Intercept kept constant

3. Change in predicted value divided by change in slope

+

D	Е	F
	Predicted	
	kcal from	Differences
Predicted	Solver	(c <mark>hange in)</mark>
kcal	estimates	F)
34.489	34.4990905	0.010
32.349	32.3591036	0.010
29.088	29.0981712	0.010
30.107	30.1172126	0.010
34,897	34.906707	0.010
33.267	33.2762408	0.010
283.851	283.858514	0.007
295, 469	295.475585	0.007
294, 449	294.456544	0.007
338,472	338.479131	0.007
315.850	315.856413	0.007
406.749	406.754903	0.006
385.247	385.25313	0.006

118	Solver's solutions (best fi	it)	dY/ds	
119	Slope	-10.1904	-95.11	
120	Int	1003.709	-95.32	
121			-95.64	
122	Altered solutions		-95.54	
123	Slope	-10.1905	 -95.07	
124	Intercept	1003.709	-95.23	
125				=
126	Change in slope	0.000102	-70.64	
127			-69.5	
			-69.6	
			-65.28	
			-67.5	
			-58.58	
		a ferra de la seconda de la La seconda de la seconda de	-60.69	
127			-69.5 -69.6 -65.28 -67.5 -58.58 -60.69	5 5 3 9

4,5. Return slope to Solver value, repeat with intercept

4

			1000
	Predicted		
	kcal from	Differences	
Predicted	Solver	(change in	ę
kcal	estimates	F)	C
34.500	34.4990905	-0.001	
32.360	32.3591036	-0.001	
29.099	29.0981712	-0.001	
30.118	30.1172126	-0.001	22
34.908	34.906707	-0.001	
33.277	33.2762408	-0.001	
283.860	283.858514	-0.001	
295.477	295.475585	-0.001	
294.458	294.456544	-0.001	
338,480	338.479131	-0.001	
315.857	315.856413	-0.001	
406.756	406.754903	-0.001	
385.254	385.25313	-0.001	

18	olver's solutions (best fit)				
.19	Slope	-10.1904			
20	Int	1003.709			
21					
22	Altered solutions				
23	Slope	-10.1904			
24	Intercept	1003.71			
25					
.26	Change in intercept	-0.001			
77					

	dY/di	
161	1	
ili.	1	
	1	
	1	
	1	
	1	
192		
	1	
	1	
	1	
	1	
	1	Γ
	1	T
38	1	

Calculating sums of squares and cross products the "easy" way

- We just made a matrix with columns dY/ds and dY/di
- Want to square these and sum them for the main diagonal of P
- We want to multiply them together and sum them for the off-diagonals
- We can do this in one calculation using matrix multiplication – multiply the matrix by its transpose
- What's a transpose?

Transpose of a matrix

 A matrix is "transposed" by swapping the rows and columns

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \mathbf{A}' = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

 $\mathbf{A}' \times \mathbf{A} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} aa + cc & ab + cd \\ ba + dc & bb + dd \end{bmatrix}$

Pre-multiplying a matrix by its transpose gives sums of squares and cross products

6. Calculate sums of squares and cross-products of dY/ds and dY/di

	Font	1201/01/05/2012/02/02/02/02 120	Alignment	INUMDER	la l	Styles	asimani ang pa	Cells
1997 - E	$f_x \ll f_x$ {=MMULT(R2:EB3,N2:O116)}							
<u>M</u>	N	0	P Q	R	S	Т	U	V
	d¥/ds	dY/di						
rrav formula	-95.11	1	dY/ds	-95.11	-95.32	-95.64	-95.54	-95.07
or matrix	-95.32	1	dY/di	1	1	1	1	1
nultiplication	-95.64	1						
	-95.54	1						
	-95.07	1	dY/ds and	1				
	-95.23	1	dY/di,	P Matrix,	by finite di	fference ap	proximatio	n
	-95.27	1	transpose	d				
	-94.12	1			Slope	Intercept		
dY/ds and	-95.43	1		Slope	870102.3	-9965.21		
dY/di	-94.39	1		Intercept	-9965.21	115		
calculated by	-95.64	1						
altering slope	es -94.64	1		1/04	rix multi	diantian	of dV/da	
and intercep	ts -93.79	1		dY/	di bv trai	nsposed (dY/ds. dY	//di

Finally, calculate the standard errors

- To calculate the standard errors from the P matrix, we need to:
 - Invert the matrix
 - Multiply the square root of each of the values on the main diagonal by the standard error of Y
- This will give us both the standard errors we need
- What's a matrix inverse?

Matrix inverse

For a single number, a, the inverse is 1/a $a \ge 1/a = 1$

We will let the computer solve inverses for us...

The inverse of our P matrix

<i>fx</i> {=N	/INVERSE(S	10:T11)}		
R	S	Т	U	v
D Matrix	L	£6		
P Watrix,	by finite di	frerence a	pproximat	ion
	Slope	Intercept		
Slope	870102.3	-9965.21		
Intercept	-9965.21	115		
Inverse o	of P matrix			
	Slope	Intercept		
Slope	0.000152	0.013175		
Intercept	t 0.013175	1.150391		

Standard errors

	· · · ·				
: X	$\sqrt{f_x} = S$	QRT(J12	2)*G120		
F	G	Н	1	J	К
	Squared				
	deviations				
	36.0				
	2.7				
	47.6				
	40.7				
	9.6				
Sum Sq.	13641.3		Inverse of	the P mat	rix
SE(y)	10.98725282				
				Slope	Intercept
SE(s)	0.135480164		Slope	0.000152	0.013175
SE(i)	11.7845214		Intercept	0.013175	1.150391

Standard error of y is:

$$SE(Y) = \sqrt{\frac{SSY}{n-2}} = 10.987$$

SE of slope is:

 $SE(s) = \sqrt{P_{11}^{-1}} SE(Y) = \sqrt{0.000152} (10.987)$

SE of intercept is:

 $SE(s) = \sqrt{P_{22}^{-1}}SE(Y) = \sqrt{1.150391}(10.987)$

Tests of significance for coefficients

- The coefficient divided by its standard error can be tested as a t-value
- Use the error degrees of freedom for the model
- The test is whether the coefficient is equal to 0
 - If you fail to reject this, the coefficient isn't significant, isn't needed in the model
 - If you reject this, the coefficient is significant, is needed in the model

Significance tests

Coefficient	Estimate	SE	Т	df	р
S	-10.19	0.1355	-10.19/0.1355 = -75.22	113	2.3 x 10 ⁻⁹⁸
i	1003.71	11.78	1003.71/11.78 = 85.17	113	2.4 x 10 ⁻¹⁰⁴

A trickier problem

- Sometimes what we can measure and what we want to know are two different things
- If we know how the quantity we want to know is related to the things we can measure, we can:
 - Use a function that shows the relationship
 - Fit the function to the data we can measure
 - Use the parameters from the best fit line as estimates of the quantities we are interested in
- Example: photosynthesis data

Net photosynthesis as a function of light intensity

A model of photosynthesis

• A mechanistic model that explains the relationship between light intensity and net photosynthesis is:

$$P_{net} = \frac{\Phi Q + P_{marea} - \sqrt{(\Phi Q + P_{marea})^2 - 4\theta \Phi Q P_{marea}}}{2\theta}$$

- By fitting this function to the data, it's possible to get estimates of each of the parameters
- The parameters have biological interpretations

To be estimated

- Φ = Phi = Maximum quantum yield (CO₂ molecules fixed per photon)
- P_{marea} = Maximum area-based rate of net photosynthesis (CO₂ per m² per s)
- θ = Theta = Convexity of the curve (dimensionless adjusts curve shape)

Known (the data)

- Q = Light intensity (predictor variable, set by photosynthesis system)
- P_{net} = Net photosynthesis (response variable, measured by photosynthesis system)

In Excel - setup

The data

Predicted Pnet from equation

Solver settings

Solver Parameters	×
Set Target Cell: <u>\$D\$11</u>	<u>S</u> olve
Equal To: O Max O Min O Value of: O	Close
\$B\$11:\$B\$13 <u>G</u> uess	
-Subject to the Constraints:	Options
<u>A</u> dd	
	Reset All
	Help

Solver's solution

Standard errors

- We can use the same methods we used for regression
- Only difference is now we have three parameters

Predicted from modified parameters

Calculate deltas

	А	в	С	D	E	F	G	Н	I	
			•			Solver				
1	Q	Pnet	Predicted	(Obs - Pre	dicted)^2	predicted	dY/dTheta	dY/dPhi	dY/dPmarea	
2	0	0.109075	0	0.011897		0	0	0	0	
3	50	1.130192	1.182138	0.002698		1.1821377	0.581955041	36.65509338	0.067087787	
4	100	2.000815	1.933935	0.004473		1.9339337	1.468962768	39.61390109	0.295566499	
5	250	2.583246	2.606915	0.00056		2.6069128	1.234966444	15.24741928	0.746734242	
6	500	2.719568	2.793665	0.00549		2.7936621	0.654663839	6.244039967	0.892398646	
7	1000	2.899914	2.872736	0.000739		2.8727327	0.327123371	2.767013381	0.951014787	
8	1500	2.788039	2.897002	0.011873		2.8969987	0.217304158	1.768694101	0.968375841	
9	2000	3.059445	2.908755	0.022707		2.9087522	0.162598782	1.29859205	0.976662128	
10										
11	Theta	0.797061	SumSq	0.060438						
12	Phi	0.026865								
13	Pmarea	2.942541								
14								Chan	ige in	
15	Theta	0.797061	1					predicted value		
16	Phi	0.026865	1			Predict	ctions from c		ided by change	
17	Pmarea	2.942538	1.000001			Solver's estimates		s in parameter value		
10										

Calculate P (matrix, not P_{net})

G	н	I	J	К	L	M	N	0
dY/dTheta	dY/dPhi	dY/dPmarea						
0	0	0						
0.581955041	36.65509338	0.067087787						
1.468962768	39.61390109	0.295566499						
1.234966444	15.24741928	0.746734242						
0.654663839	6.244039967	0.892398646						
0.327123371	2.767013381	0.951014787						
0.217304158	1.768694101	0.968375841						
0.162598782	1.29859205	0.976662128						
Deltas transpo	osed							
dY/dTheta	0	0.581955041	1.468963	1.234966	0.654664	0.327123	0.217304	0.162599
dY/dPhi	0	36.65509338	39.6139	15.24742	6.24404	2.767013	1.768694	1.298592
dY/dPmarea	0	0.067087787	0.295566	0.746734	0.892399	0.951015	0.968376	0.976662
_								
P matri	x							
4.6	103.9	2.7						
103.9	3196.8	36.7						
2.7	36.7	4.2						

Invert P, calculate standard errors

	CATALIAN AN A	E CARACTERIA DE CARACTERIA D		GARANKA MAN
Pinver	se			
1.45	-0.04	-0.56		
-0.04	0.00	0.01		
-0.56	0.01	0.48		
SE(Y) - 8 obsei	rvations, 3 f	itted para	ameters	= 5 df
0.109943554				
Parameter	Estimate	SE	t	р
Theta	0.797	0.132	6.0	0.002
Phi	0.027	0.004	6.3	0.001
Pmarea	2.943	0.076	38.8	2.14E-07